1,096 research outputs found

    Relation between trees of fragmenting granules and supergranulation evolution

    Full text link
    Context: The determination of the underlying mechanisms of the magnetic elements diffusion over the solar surface is still a challenge. Understanding the formation and evolution of the solar network (NE) is a challenge, because it provides a magnetic flux over the solar surface comparable to the flux of active regions at solar maximum. Aims: We investigate the structure and evolution of interior cells of solar supergranulation. From Hinode observations, we explore the motions on solar surface at high spatial and temporal resolution. We derive the main organization of the flows inside supergranules and their effect on the magnetic elements. Method: To probe the superganule interior cell, we used the Trees of Fragmenting Granules (TFG) evolution and their relations to horizontal Results: Evolution of TFG and their mutual interactions result in cumulative effects able to build horizontal coherent flows with longer lifetime than granulation (1 to 2 hours) over a scale up to 12\arcsec. These flows clearly act on the diffusion of the intranetwork (IN) magnetic elements and also on the location and shape of the network. Conclusions: From our analysis during 24 hours, TFG appear as one of the major elements of the supergranules which diffuse and advect the magnetic field on the Sun's surface. The strongest supergranules contribute the most to magnetic flux diffusion in the solar photosphere.Comment: 13 pages, 17 figures, accepted in Astronomy and Astrophysics movie : http://www.lesia.obspm.fr/perso/jean-marie-malherbe/Hinode2007/hinode2007.htm

    Can prominences form in current sheets

    Get PDF
    Two-dimensional numerical simulations of the formation of cold condensations in a vertical current sheet have been performed using the radiative, resistive MHD equations with line-tied boundary conditions at one end of the sheet. Prominence-like condensations are observed to appear above and below an X-line produced by the onset of the tearing-mode instability. Cooling in the sheet is initiated by Ohmic decay, with the densest condensations occurring in the region downstream of a fast-mode shock. This shock, which is due to the line-tied boundary conditions, terminates one of the two supermagnetosonic reconnection jets that develop when the tearing is fully developed. The condensation properties of shock waves, which may trigger or considerably enhance the conditions for thermal condensation are emphasized

    On the thermal durability of solar prominences, or how to evaporate a prominence

    Get PDF
    The thermal disappearance of solar prominences under strong perturbations due to wave heating, Ohmic heating, viscous heating or conduction was investigated. Specifically, how large a thermal perturbation is needed to destroy a stable thermal equilibrium was calculated. It was found that the prominence plasma appears to be thermally very rugged. Its cold equilibrium may most likely be destroyed by either strong magnetic heating or conduction in a range of parameters which is relevant to flares

    DU Explorer et Comprendre l'Univers: introduction Ă  la physique du Soleil

    No full text
    LicenceCe cours de niveau L1 donne les principales clefs pour comprendre les questions qui se posent en physique du Soleil

    Controlling the composition of a confined fluid by an electric field

    Full text link
    Starting from a generic model of a pore/bulk mixture equilibrium, we propose a novel method for modulating the composition of the confined fluid without having to modify the bulk state. To achieve this, two basic mechanisms - sensitivity of the pore filling to the bulk thermodynamic state and electric field effect - are combined. We show by Monte Carlo simulation that the composition can be controlled both in a continuous and in a jumpwise way. Near the bulk demixing instability, we demonstrate a field induced population inversion in the pore. The conditions for the realization of this method should be best met with colloids, but being based on robust and generic mechanisms, it should also be applicable to some molecular fluids.Comment: 9 pages, 5 figure

    Investigation of dynamic stresses in detona- tion technical note no. 7

    Get PDF
    Axial and hoop stress calculation in blast loaded thin walled cylindrical pressure vessel

    The New 2018 Version of the Meudon Spectroheliograph

    Full text link
    Daily full-disk observations of the solar photosphere and chromosphere started at Meudon Observatory in 1908. After a review of the scientific context and the historical background, we describe the instrumental characteristics and capabilities of the new version operating since 2018. The major change is the systematic recording of full line profiles over the entire solar disk providing 3D data cubes. Spectral and spatial sampling are both improved. Classical 2D images of the Sun at fixed wavelength are still delivered. We summarize the different processing levels of on-line data and briefly review the new scientific perspectives.Comment: 14 pages, 5 figures; Published in Solar Physic

    Constraints on filament models deduced from dynamical analysis

    Get PDF
    The conclusions deduced from simultaneous observations with the Ultra-Violet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission satellite, and the Multichannel Subtractive Double Pass (MSPD) spectrographs at Meudon and Pic du Midi observatories are presented. The observations were obtained in 1980 and 1984. All instruments have almost the same field of view and provide intensity and velocity maps at two temperatures. The resolution is approx. 0.5 to 1.5" for H alpha line and 3" for C IV. The high resolution and simultaneity of the two types of observations allows a more accurate description of the flows in prominences as functions of temperature and position. The results put some contraints on the models and show that dynamical aspects must be taken into account

    Mesoscale dynamics on the Sun's surface from HINODE observations

    Full text link
    Aims: The interactions of velocity scales on the Sun's surface, from granulation to supergranulation are still not understood, nor are their interaction with magnetic fields. We thus aim at giving a better description of dynamics in the mesoscale range which lies between the two scales mentioned above. Method: We analyse a 48h high-resolution time sequence of the quiet Sun photosphere at the disk center obtained with the Solar Optical Telescope onboard Hinode. The observations, which have a field of view of 100 \arcsec×\times 100 \arcsec, typically contain four supergranules. We monitor in detail the motion and evolution of granules as well as those of the radial magnetic field. Results: This analysis allows us to better characterize Trees of Fragmenting Granules issued from repeated fragmentation of granules, especially their lifetime statistics. Using floating corks advected by measured velocity fields, we show their crucial role in the advection of the magnetic field and in the build up of the network. Finally, thanks to the long duration of the time series, we estimate that the turbulent diffusion coefficient induced by horizontal motion is approximately 430km2s−1430 \mathrm{km}^2 \mathrm{s}^{-1}. Conclusions: These results demonstrate that the long living families contribute to the formation of the magnetic network and suggest that supergranulation could be an emergent length scale building up as small magnetic elements are advected and concentrated by TFG flows. Our estimate for the magnetic diffusion associated with this horizontal motion might provide a useful input for mean-field dynamo models.Comment: to appear in A&A - 8 pages, 13 figures (degraded quality) - Full resolution version available @ http://www.ast.obs-mip.fr/users/rincon/hinode_roudier_aa09.pd

    Texture of average solar photospheric flows and the donut-like pattern

    Full text link
    Detailed knowledge of surface dynamics is one of the key points in understanding magnetic solar activity. The motions of the solar surface, to which we have direct access via the observations, tell us about the interaction between the emerging magnetic field and the turbulent fields. The flows computed with the coherent structure tracking (CST) technique on the whole surface of the Sun allow for the texture of the velocity modulus to be analyzed and for one to locate the largest horizontal flows and determine their organization. The velocity modulus maps show structures more or less circular and closedwhich are visible at all latitudes; here they are referred to as donuts. They reflect the most active convective cells associated with supergranulation. These annular flows are not necessarily joined as would seem to indicate the divergence maps. The donuts have identical properties (amplitude, shape, inclination, etc.) regardless of their position on the Sun. The kinematic simulation of the donuts' outflow applied to passive scalar (corks) indicates the preponderant action of the selected donuts which are, from our analysis, one of the major actors for the magnetic field diffusion on the quiet Sun. The absence of donuts in the magnetized areas (plages) indicates the action of the magnetic field on the strongest supergranular flows and thus modifies the diffusion of the magnetic field in that location. The detection of the donuts is a way to locate in the quiet Sun the vortex and the link with the jet, blinkers, coronal bright points (campfires), or other physical structures. Likewise, the study of the influence of donuts on the evolution of active events, such as the destruction of sunspots, filament eruptions, and their influences on upper layers via spicules and jets, could be done more efficiently via the detection of that structures.Comment: 14 pages, 17 figure
    • 

    corecore