67 research outputs found

    Microwave and Physical Electronics

    Get PDF
    Contains reports on six research projects.Office of Scientific Research and Development (OSRD) OEMsr-26

    Ionic liquids at electrified interfaces

    Get PDF
    Until recently, “room-temperature” (<100–150 °C) liquid-state electrochemistry was mostly electrochemistry of diluted electrolytes(1)–(4) where dissolved salt ions were surrounded by a considerable amount of solvent molecules. Highly concentrated liquid electrolytes were mostly considered in the narrow (albeit important) niche of high-temperature electrochemistry of molten inorganic salts(5-9) and in the even narrower niche of “first-generation” room temperature ionic liquids, RTILs (such as chloro-aluminates and alkylammonium nitrates).(10-14) The situation has changed dramatically in the 2000s after the discovery of new moisture- and temperature-stable RTILs.(15, 16) These days, the “later generation” RTILs attracted wide attention within the electrochemical community.(17-31) Indeed, RTILs, as a class of compounds, possess a unique combination of properties (high charge density, electrochemical stability, low/negligible volatility, tunable polarity, etc.) that make them very attractive substances from fundamental and application points of view.(32-38) Most importantly, they can mix with each other in “cocktails” of one’s choice to acquire the desired properties (e.g., wider temperature range of the liquid phase(39, 40)) and can serve as almost “universal” solvents.(37, 41, 42) It is worth noting here one of the advantages of RTILs as compared to their high-temperature molten salt (HTMS)(43) “sister-systems”.(44) In RTILs the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules

    Surface-Initiated Polymer Brushes in the Biomedical Field: Applications in Membrane Science, Biosensing, Cell Culture, Regenerative Medicine and Antibacterial Coatings

    Get PDF

    The behaviour of giant clams (Bivalvia: Cardiidae: Tridacninae)

    Get PDF

    Deciphering drift time measurements from travelling wave ion mobility spectrometry-mass spectrometry studies

    No full text
    Detailed knowledge of the tertiary and quaternary structure of proteins and protein complexes is of immense importance in understanding their functionality. Similarly, variations in the conformational states of proteins form the underlying mechanisms behind many biomolecular processes, numerous of which are disease-related. Thus, the availability of reliable and accurate biophysical techniques that can provide detailed information concerning these issues is of paramount importance. Ion mobility spectrometry (IMS) coupled to mass spectrometry (MS) offers a unique opportunity to separate multi-component biomolecular entities and to measure the molecular mass and collision cross-section of individual components in a single, rapid (<= 2 min) experiment, providing 3D-architectural information directly. Here we report a method of calibrating a commercially available electrospray ionisation (ESI)-travelling wave ion mobility spectrometry (TWIMS)-mass spectrometer using known cross-sectional areas determined for a range of biomolecules by conventional IMS-MS. Using this method of calibration, we have analysed a range of proteins of differing mass and 3D architecture in their native conformations by ESI-TWIMS-MS and found that the cross-sectional areas measured in this way compare extremely favourably with cross-sectional areas calculated using an in-house computing method based on Protein Data Bank NMR-derived co-ordinates. This not only provides a high degree of confidence in the calibration method, but also suggests that the gas phase ESI-TWIMS-MS measurements relate well to solution-based measurements derived from other biophysical techniques. In order to determine which instrumental parameters affect the ESI-TWIMS-MS cross-sectional area calibration, a systematic study of the parameters used to optimise TWIMS drift time separations has been carried out, observing the effect each parameter has on drift times and IMS resolution. Finally, the ESI-TWIMS-MS cross-sectional area calibration has been applied to the analysis of the amyloidogenic protein beta(2)-microglobulin and measurements for three co-populated conformational families, present under denaturing conditions, have been made: the folded, partially unfolded and unfolded states

    Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase

    Get PDF
    The hydrophobic effect—a rationalization of the insolubility of nonpolar molecules in water—is centrally important to biomolecular recognition. Despite extensive research devoted to the hydrophobic effect, its molecular mechanisms remain controversial, and there are still no reliably predictive models for its role in protein–ligand binding. Here we describe a particularly well-defined system of protein and ligands—carbonic anhydrase and a series of structurally homologous heterocyclic aromatic sulfonamides—that we use to characterize hydrophobic interactions thermodynamically and structurally. In binding to this structurally rigid protein, a set of ligands (also defined to be structurally rigid) shows the expected gain in binding free energy as hydrophobic surface area is added. Isothermal titration calorimetry demonstrates that enthalpy determines these increases in binding affinity, and that changes in the heat capacity of binding are negative. X-ray crystallography and molecular dynamics simulations are compatible with the proposal that the differences in binding between the homologous ligands stem from changes in the number and organization of water molecules localized in the active site in the bound complexes, rather than (or perhaps in addition to) release of structured water from the apposed hydrophobic surfaces. These results support the hypothesis that structured water molecules—including both the molecules of water displaced by the ligands and those reorganized upon ligand binding—determine the thermodynamics of binding of these ligands at the active site of the protein. Hydrophobic effects in various contexts have different structural and thermodynamic origins, although all may be manifestations of the differences in characteristics of bulk water and water close to hydrophobic surfaces
    • 

    corecore