16 research outputs found
Influence of infrared radiation on the electrical characteristics of the surface-barrier nanostructures based on MBE HgCdTe
Impact of illumination on the admittance of the MIS structures based on MBE Hg1-xCdxTe with graded-gap layers and single quantum wells was investigated. It is shown that for HgCdTe-based nanostructures the illumination greatly affects the capacitance and conductance dependencies. The capacitance-voltage characteristics exhibit a low-frequency behavior, which is associated with a decrease in the differential resistance of the space charge region. Especially informative illumination exposure is in the study of deep traps in n-HgCdTe (x=0.21-0.23) without graded-gap layer. Illumination leads to the low-frequency behavior of capacitance-voltage characteristics of MIS structures based on p-HgCdTe with HgTe single quantum well in the active region, and maximums in the voltage dependences do not appear
Evolution of MBE HgCdTe defect structure studied with ion milling method
In this paper, is shown how ion milling can assist in assessing the defect structure of MCT by revealing the residual doping, and establishing the minimum level of donor concentration Nmd, which is needed for obtaining n-regions with a reproducible n value. For this purpose, a study of the electrical properties of ion-milled LWIR n-type MCT films, un-doped and doped with indium with the concentration NIn = 5 × 1014–1017 cm−3 is proposed
QuickSun 830A module solar simulator. Study of mini PV modules
QS830A module solar simulator is applied to measure electrical parameters of standard PV modules based on mono/polycrystalline silicon solar cells, large format photovoltaic (PV) modules 150 cm x 220 cm, with effective measurements time of 2 ms / 4 ms, flush pulse duration 3 ms / 10 ms (one flash tube / two flash tubes), and non-uniformity less than 2%. In order to comply with the Class AAA tolerances of the standard IEC 60904-9 Edition 2.0 of QuickSun 830A simulators (Endeas Oy, Finland), proprietary optical system behind the light source filament has been developed for filtering spectrum and improving irradiance nonuniformity simultaneously. Non-uniformity parameter for 14% of total modules testing area, i.e. 0.65 m2, will be appointed in this work
Transmittance of selected nanostructurized solar glasses designated via relative change in electrical parameters of silicon solar cells
Photovoltaics is one of the most promising technologies for electricity production. In the future, photovoltaics could be an effective and safe source of energy.
In this work were present the results of the analysis of a special solar glasses transmissivity coefficient used as protective cover of photovoltaic cell. Antireflective glass due to its unique physical properties eliminate reflections and significantly increasing light transmission. The study of the relative change in the electrical parameters of photovoltaic cells ,with and without coats, as open-circuit current ISC and the maximum power point MPP are presented in this paper. Research were undertaken with using the solar simulator QuickSun130CA, Class AAA+, under Standard Test Conditions
QuickSun 830A module solar simulator. Study of mini PV modules
QS830A module solar simulator is applied to measure electrical parameters of standard PV modules based on mono/polycrystalline silicon solar cells, large format photovoltaic (PV) modules 150 cm x 220 cm, with effective measurements time of 2 ms / 4 ms, flush pulse duration 3 ms / 10 ms (one flash tube / two flash tubes), and non-uniformity less than 2%. In order to comply with the Class AAA tolerances of the standard IEC 60904-9 Edition 2.0 of QuickSun 830A simulators (Endeas Oy, Finland), proprietary optical system behind the light source filament has been developed for filtering spectrum and improving irradiance nonuniformity simultaneously. Non-uniformity parameter for 14% of total modules testing area, i.e. 0.65 m2, will be appointed in this work
Evolution of MBE HgCdTe defect structure studied with ion milling method
In this paper, is shown how ion milling can assist in assessing the defect structure of MCT by revealing the residual doping, and establishing the minimum level of donor concentration Nmd, which is needed for obtaining n-regions with a reproducible n value. For this purpose, a study of the electrical properties of ion-milled LWIR n-type MCT films, un-doped and doped with indium with the concentration NIn = 5 × 1014–1017 cm−3 is proposed
Influence of infrared radiation on the electrical characteristics of the surface-barrier nanostructures based on MBE HgCdTe
Impact of illumination on the admittance of the MIS structures based on MBE Hg1-xCdxTe with graded-gap layers and single quantum wells was investigated. It is shown that for HgCdTe-based nanostructures the illumination greatly affects the capacitance and conductance dependencies. The capacitance-voltage characteristics exhibit a low-frequency behavior, which is associated with a decrease in the differential resistance of the space charge region. Especially informative illumination exposure is in the study of deep traps in n-HgCdTe (x=0.21-0.23) without graded-gap layer. Illumination leads to the low-frequency behavior of capacitance-voltage characteristics of MIS structures based on p-HgCdTe with HgTe single quantum well in the active region, and maximums in the voltage dependences do not appear
Influence of infrared radiation on the electrical characteristics of the surface-barrier nanostructures based on MBE HgCdTe
Impact of illumination on the admittance of the MIS structures based on MBE Hg1-xCdxTe with graded-gap layers and single quantum wells was investigated. It is shown that for HgCdTe-based nanostructures the illumination greatly affects the capacitance and conductance dependencies. The capacitance-voltage characteristics exhibit a low-frequency behavior, which is associated with a decrease in the differential resistance of the space charge region. Especially informative illumination exposure is in the study of deep traps in n-HgCdTe (x=0.21-0.23) without graded-gap layer. Illumination leads to the low-frequency behavior of capacitance-voltage characteristics of MIS structures based on p-HgCdTe with HgTe single quantum well in the active region, and maximums in the voltage dependences do not appear
Influence of infrared radiation on the electrical characteristics of the surface-barrier nanostructures based on MBE HgCdTe
Impact of illumination on the admittance of the MIS structures based on MBE Hg1-xCdxTe with graded-gap layers and single quantum wells was investigated. It is shown that for HgCdTe-based nanostructures the illumination greatly affects the capacitance and conductance dependencies. The capacitance-voltage characteristics exhibit a low-frequency behavior, which is associated with a decrease in the differential resistance of the space charge region. Especially informative illumination exposure is in the study of deep traps in n-HgCdTe (x=0.21-0.23) without graded-gap layer. Illumination leads to the low-frequency behavior of capacitance-voltage characteristics of MIS structures based on p-HgCdTe with HgTe single quantum well in the active region, and maximums in the voltage dependences do not appear