23 research outputs found

    Defective interaction between Pol2p and Dpb2p, subunits of DNA polymerase epsilon, contributes to a mutator phenotype in Saccharomyces cerevisiae.

    Get PDF
    Most of the prokaryotic and eukaryotic replicative polymerases are multi-subunit complexes. There are several examples indicating that noncatalytic subunits of DNA polymerases may function as fidelity factors during replication process. In this work, we have further investigated the role of Dpb2p, a noncatalytic subunit of DNA polymerase epsilon holoenzyme from Saccharomyces cerevisiae in controlling the level of spontaneous mutagenesis. The data presented indicate that impaired interaction between catalytic Pol2p subunit and Dpb2p is responsible for the observed mutator phenotype in S. cerevisiae strains carrying different mutated alleles of the DPB2 gene. We observed a significant correlation between the decreased level of interaction between different mutated forms of Dpb2p towards a wild-type form of Pol2p and the strength of mutator phenotype that they confer. We propose that structural integrity of the Pol epsilon holoenzyme is essential for genetic stability in S. cerevisiae cells

    Mutations for worse or better: low-fidelity DNA Synthesis by SOS DNA polymerase v is a tightly regulated double-edged sword

    No full text
    1953, the year of Watson and Crick, bore witness to a less acclaimed yet highly influential discovery. Jean Weigle demonstrated that upon infection of Escherichia coli, λ phage deactivated by UV radiation, and thus unable to form progeny, could be reactivated by irradiation of the bacterial host. Evelyn Witkin and Miroslav Radman later revealed the presence of the SOS regulon. The more than 40 regulon genes are repressed by LexA protein and induced by the coproteolytic cleavage of LexA, catalyzed by RecA protein bound to single-stranded DNA, the RecA* nucleoprotein filament. Several SOS-induced proteins are engaged in repairing both cellular and extracellular damaged DNA. There\u27s no free lunch , however, because error-free repair is accompanied by error-prone translesion DNA synthesis (TLS), involving E. coli DNA polymerase V (UmuD′2C) and RecA*. This review describes the biochemical mechanisms of pol V-mediated TLS. pol V is active only as a mutasomal complex, pol V Mut = UmuD′2C-RecA-ATP. RecA* donates a single RecA subunit to pol V. We highlight three recent insights. (1) pol V Mut has an intrinsic DNA-dependent ATPase activity that governs polymerase binding and dissociation from DNA. (2) Active and inactive states of pol V Mut are determined at least in part by the distinct interactions between RecA and UmuC. (3) pol V is activated by RecA*, not at a blocked replisome, but at the inner cell membrane

    Dpb2p, a Noncatalytic Subunit of DNA Polymerase É›, Contributes to the Fidelity of DNA Replication in Saccharomyces cerevisiae

    Get PDF
    Most replicases are multi-subunit complexes. DNA polymerase epsilon from Saccharomyces cerevisiae is composed of four subunits: Pol2p, Dpb2p, Dpb3p, and Dpb4p. Pol2p and Dpb2p are essential. To investigate a possible role for the Dpb2p subunit in maintaining the fidelity of DNA replication, we isolated temperature-sensitive mutants in the DPB2 gene. Several of the newly isolated dpb2 alleles are strong mutators, exhibiting mutation rates equivalent to pol2 mutants defective in the 3′ → 5′ proofreading exonuclease (pol2-4) or to mutants defective in mismatch repair (msh6). The dpb2 pol2-4 and dpb2 msh6 double mutants show a synergistic increase in mutation rate, indicating that the mutations arising in the dpb2 mutants are due to DNA replication errors normally corrected by mismatch repair. The dpb2 mutations decrease the affinity of Dpb2p for the Pol2p subunit as measured by two-hybrid analysis, providing a possible mechanistic explanation for the loss of high-fidelity synthesis. Our results show that DNA polymerase subunits other than those housing the DNA polymerase and 3′ → 5′ exonuclease are essential in controlling the level of spontaneous mutagenesis and genetic stability in yeast cells

    Proper functioning of the GINS complex is important for the fidelity of DNA replication in yeast

    Get PDF
    The role of replicative DNA polymerases in ensuring genome stability is intensively studied, but the role of other components of the replisome is still not fully understood. One of such component is the GINS complex (comprising the Psf1, Psf2, Psf3 and Sld5 subunits), which participates in both initiation and elongation of DNA replication. Until now, the understanding of the physiological role of GINS mostly originated from biochemical studies. In this article, we present genetic evidence for an essential role of GINS in the maintenance of replication fidelity in S. cerevisiae. In our studies we employed the psf1-1 allele (Takayama et al., 2003) and a novel psf1-100 allele isolated in our laboratory. Analysis of the levels and specificity of mutations in the psf1 strains indicates that the destabilization of the GINS complex or its impaired interaction with DNA polymerase epsilon increases the level of spontaneous mutagenesis and the participation of the error-prone DNA polymerase zeta. Additionally, a synergistic mutator effect was found for the defects in Psf1p and in the proofreading activity of Pol epsilon, suggesting that proper functioning of GINS is crucial for facilitating error-free processing of terminal mismatches created by Pol epsilon

    Conformational regulation of Escherichia coli DNA polymerase V by RecA and ATP.

    No full text
    Mutagenic translesion DNA polymerase V (UmuD'2C) is induced as part of the DNA damage-induced SOS response in Escherichia coli, and is subjected to multiple levels of regulation. The UmuC subunit is sequestered on the cell membrane (spatial regulation) and enters the cytosol after forming a UmuD'2C complex, ~ 45 min post-SOS induction (temporal regulation). However, DNA binding and synthesis cannot occur until pol V interacts with a RecA nucleoprotein filament (RecA*) and ATP to form a mutasome complex, pol V Mut = UmuD'2C-RecA-ATP. The location of RecA relative to UmuC determines whether pol V Mut is catalytically on or off (conformational regulation). Here, we present three interrelated experiments to address the biochemical basis of conformational regulation. We first investigate dynamic deactivation during DNA synthesis and static deactivation in the absence of DNA synthesis. Single-molecule (sm) TIRF-FRET microscopy is then used to explore multiple aspects of pol V Mut dynamics. Binding of ATP/ATPγS triggers a conformational switch that reorients RecA relative to UmuC to activate pol V Mut. This process is required for polymerase-DNA binding and synthesis. Both dynamic and static deactivation processes are governed by temperature and time, in which on → off switching is "rapid" at 37°C (~ 1 to 1.5 h), "slow" at 30°C (~ 3 to 4 h) and does not require ATP hydrolysis. Pol V Mut retains RecA in activated and deactivated states, but binding to primer-template (p/t) DNA occurs only when activated. Studies are performed with two forms of the polymerase, pol V Mut-RecA wt, and the constitutively induced and hypermutagenic pol V Mut-RecA E38K/ΔC17. We discuss conformational regulation of pol V Mut, determined from biochemical analysis in vitro, in relation to the properties of pol V Mut in RecA wild-type and SOS constitutive genetic backgrounds in vivo

    A RecA protein surface required for activation of DNA polymerase V.

    No full text
    DNA polymerase V (pol V) of Escherichia coli is a translesion DNA polymerase responsible for most of the mutagenesis observed during the SOS response. Pol V is activated by transfer of a RecA subunit from the 3'-proximal end of a RecA nucleoprotein filament to form a functional complex called DNA polymerase V Mutasome (pol V Mut). We identify a RecA surface, defined by residues 112-117, that either directly interacts with or is in very close proximity to amino acid residues on two distinct surfaces of the UmuC subunit of pol V. One of these surfaces is uniquely prominent in the active pol V Mut. Several conformational states are populated in the inactive and active complexes of RecA with pol V. The RecA D112R and RecA D112R N113R double mutant proteins exhibit successively reduced capacity for pol V activation. The double mutant RecA is specifically defective in the ATP binding step of the activation pathway. Unlike the classic non-mutable RecA S117F (recA1730), the RecA D112R N113R variant exhibits no defect in filament formation on DNA and promotes all other RecA activities efficiently. An important pol V activation surface of RecA protein is thus centered in a region encompassing amino acid residues 112, 113, and 117, a surface exposed at the 3'-proximal end of a RecA filament. The same RecA surface is not utilized in the RecA activation of the homologous and highly mutagenic RumA'2B polymerase encoded by the integrating-conjugative element (ICE) R391, indicating a lack of structural conservation between the two systems. The RecA D112R N113R protein represents a new separation of function mutant, proficient in all RecA functions except SOS mutagenesis

    The RecA 3'-surface interacts with UmuC in pol V Mut.

    No full text
    <p>The photo-reactive unnatural amino acid Bpa was incorporated into RecA at position N113 (RecA N113Bpa) and used to probe RecA/pol V Mut interactions. The protocol for the generation of pol V Mut was followed as described in Methods, with ATP, ATPÎłS, and template-primer added where indicated. Samples were exposed to UV light to covalently crosslink the RecA N113Bpa to nearby interacting partners (A) Coomassie stained SDS-PAGE of samples. UmuC, RecA, and UmuD' bands are indicated. Higher molecular weight bands appear upon cross-linking via UV light. The major cross-linked species runs at ~100 kDa. (B) Western blot of reactions presented in (A) using antibodies to the RecA protein. (C) UmuC western blot of reactions presented in (A). UmuC is present in the major cross-linked band at ~100 kDa. (D) UmuD' western blot of reactions presented in (A). A non-specific band is present at ~49 kDa which is not UV crosslinking dependent. A weak band observed at ~60 kDa was UV-dependent, but was not observed via SDS-PAGE. Therefore, it could not be pursued via mass spectrometry analysis.</p

    Analysis of cross-linked RecA-UmuC product #1.

    No full text
    <p>The first of the two identified cross-linked products appeared in samples generated via both active and inactive pol V protocols, although it seemed to be somewhat more prominent in the inactive samples. The UmuC peptide involved in the cross-linking encompasses residues 361–376. MS/MS spectra for each of the three peaks seen in the extracted ion chromatogram (<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1005066#pgen.1005066.g012" target="_blank">Fig. 12</a>) for the RecA-UmuC cross-linked product are shown at the top. The predicted crosslinking locations for peaks A,B, and C are shown at the bottom. The lettering corresponds to the unique elution profile for the same precursor ion.</p
    corecore