618 research outputs found
Electronic structure of few-electron concentric double quantum rings
The ground state structure of few-electron concentric double quantum rings is
investigated within the local spin density approximation. Signatures of
inter-ring coupling in the addition energy spectrum are identified and
discussed. We show that the electronic configurations in these structures can
be greatly modulated by the inter-ring distance: At short and long distances
the low-lying electron states localize in the inner and outer rings,
respectively, and the energy structure is essentially that of an isolated
single quantum ring. However, at intermediate distances the electron states
localized in the inner and the outer ring become quasi-degenerate and a rather
entangled, strongly-correlated system is formed.Comment: 16 pages (preprint format), 6 figure
Mixtures of Bose gases confined in concentrically coupled annular traps
A two-component Bose-Einstein condensate confined in an axially-symmetric
potential with two local minima, resembling two concentric annular traps, is
investigated. The system shows a number of quantum phase transitions that
result from the competition between phase coexistence, and radial/azimuthal
phase separation. The ground-state phase diagram, as well as the rotational
properties, including the (meta)stability of currents in this system, are
analysed.Comment: 6 pages, 5 figures, minor revision
Magnetic field dependence of hole levels in self-assembled InAs quantum dots
Recent magneto-transport experiments of holes in InGaAs quantum dots [D.
Reuter, P. Kailuweit, A.D. Wieck, U. Zeitler, O. Wibbelhoff, C. Meier, A.
Lorke, and J.C. Maan, Phys. Rev. Lett. 94, 026808 (2005)] are interpreted by
employing a multi-band kp Hamiltonian, which considers the interaction between
heavy hole and light hole subbands explicitely. No need of invoking an
incomplete energy shell filling is required within this model. The crucial role
we ascribe to the heavy hole-light hole interaction is further supported by
one-band local-spin-density functional calculations, which show that Coulomb
interactions do not induce any incomplete hole shell filling and therefore
cannot account for the experimental magnetic field dispersion.Comment: 5 pages with 3 figures and one table. The paper has been submitted to
Phys.Rev.
Density functional theory for strongly-correlated bosonic and fermionic ultracold dipolar and ionic gases
We introduce a density functional formalism to study the ground-state
properties of strongly-correlated dipolar and ionic ultracold bosonic and
fermionic gases, based on the self-consistent combination of the weak and the
strong coupling limits. Contrary to conventional density functional approaches,
our formalism does not require a previous calculation of the interacting
homogeneous gas, and it is thus very suitable to treat systems with tunable
long-range interactions. Due to its asymptotic exactness in the regime of
strong correlation, the formalism works for systems in which standard
mean-field theories fail.Comment: 5 pages, 2 figure
Transport and interaction blockade of cold bosonic atoms in a triple-well potential
We theoretically investigate the transport properties of cold bosonic atoms
in a quasi one-dimensional triple-well potential that consists of two large
outer wells, which act as microscopic source and drain reservoirs, and a small
inner well, which represents a quantum-dot-like scattering region. Bias and
gate "voltages" introduce a time-dependent tilt of the triple-well
configuration, and are used to shift the energetic level of the inner well with
respect to the outer ones. By means of exact diagonalization considering a
total number of six atoms in the triple-well potential, we find diamond-like
structures for the occurrence of single-atom transport in the parameter space
spanned by the bias and gate voltages. We discuss the analogy with Coulomb
blockade in electronic quantum dots, and point out how one can infer the
interaction energy in the central well from the distance between the diamonds.Comment: 18 pages, 6 figure
Isospin phases of vertically coupled double quantum rings under the influence of perpendicular magnetic fields
Vertically coupled double quantum rings submitted to a perpendicular magnetic
field are addressed within the local spin-density functional theory. We
describe the structure of quantum ring molecules containing up to 40 electrons
considering different inter-ring distances and intensities of the applied
magnetic field. When the rings are quantum mechanically strongly coupled, only
bonding states are occupied and the addition spectrum of the artificial
molecules resembles that of a single quantum ring, with some small differences
appearing as an effect of the magnetic field. Despite the latter has the
tendency to flatten the spectra, in the strong coupling limit some clear peaks
are still found even when that can be interpretated from the
single-particle energy levels analogously as at zero applied field, namely in
terms of closed-shell and Hund's-rule configurations. Increasing the inter-ring
distance, the occupation of the first antibonding orbitals washes out such
structures and the addition spectra become flatter and irregular. In the weak
coupling regime, numerous isospin oscillations are found as a function of .Comment: 27 pages, 11 figures. To be published in Phys. Rev.
Spin-orbit-enhanced Wigner localization in quantum dots
We investigate quantum dots with Rashba spin-orbit coupling in the
strongly-correlated regime. We show that the presence of the Rashba interaction
enhances the Wigner localization in these systems, making it achievable for
higher densities than those at which it is observed in Rashba-free quantum
dots. Recurring shapes in the pair-correlated densities of the yrast spectrum,
which might be associated with rotational and vibrational modes, are also
reported.Comment: 5 pages, 4 figure
Vertically coupled double quantum rings at zero magnetic field
Within local-spin-density functional theory, we have investigated the
`dissociation' of few-electron circular vertical semiconductor double quantum
ring artificial molecules at zero magnetic field as a function of inter-ring
distance. In a first step, the molecules are constituted by two identical
quantum rings. When the rings are quantum mechanically strongly coupled, the
electronic states are substantially delocalized, and the addition energy
spectra of the artificial molecule resemble those of a single quantum ring in
the few-electron limit. When the rings are quantum mechanically weakly coupled,
the electronic states in the molecule are substantially localized in one ring
or the other, although the rings can be electrostatically coupled. The effect
of a slight mismatch introduced in the molecules from nominally identical
quantum wells, or from changes in the inner radius of the constituent rings,
induces localization by offsetting the energy levels in the quantum rings. This
plays a crucial role in the appearance of the addition spectra as a function of
coupling strength particularly in the weak coupling limit.Comment: 18 pages, 8 figures, submitted to Physical Review
Spectrum and Variability of Mrk501 as observed by the CAT Imaging Telescope
The CAT Imaging Telescope has observed the BL Lac object Markarian 501
between March and August 1997. We report here on the variability over this time
including several large flares. We present also preliminary spectra for all
these data, for the low emission state, and for the largest flare.Comment: 4 pages, 4 figures, Late
- …