47 research outputs found

    Synchrotron analysis of human organ tissue exposed to implant material

    Get PDF
    Background Orthopaedic implants made of cobalt-chromium alloy undergo wear and corrosion that can lead to deposition of cobalt and chromium in vital organs. Elevated cardiac tissue cobalt levels are associated with myocardial injury while chromium is a well-established genotoxin. Though metal composition of tissues surrounding hip implants has been established, few investigators attempted to characterize the metal deposits in systemic tissues of total joint arthroplasty patients. Methods We report the first use of micro-X-ray fluorescence coupled with micro-X-ray absorption spectroscopy to probe distribution and chemical form of cobalt, chromium and titanium in postmortem samples of splenic, hepatic and cardiac tissue of patients with metal-on-polyethylene hip implants (n = 5). Results Majority of the cobalt was in the 2+ oxidation state, while titanium was present exclusively as titanium dioxide, in either rutile or anatase crystal structure. Chromium was found in a range of forms including a highly oxidised, carcinogenic species (CrV/VI), which has never been identified in human tissue before. Conclusions Carcinogenic forms of chromium might arise in vital organs of total joint arthroplasty patients. Further studies are warranted with patients with metal-on-metal implants, which tend to have an increased release of cobalt and chromium compared to metal-on-polyethylene hips

    Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections.

    Get PDF
    Thoracic aortic aneurysm and dissection (TAAD) is typically inherited in an autosomal dominant manner, but rare X-linked families have been described. So far, the only known X-linked gene is FLNA, which is associated with the periventricular nodular heterotopia type of Ehlers-Danlos syndrome. However, mutations in this gene explain only a small number of X-linked TAAD families. We performed targeted resequencing of 368 candidate genes in a cohort of 11 molecularly unexplained Marfan probands. Subsequently, Sanger sequencing of BGN in 360 male and 155 female molecularly unexplained TAAD probands was performed. We found five individuals with loss-of-function mutations in BGN encoding the small leucine-rich proteoglycan biglycan. The clinical phenotype is characterized by early-onset aortic aneurysm and dissection. Other recurrent findings include hypertelorism, pectus deformity, joint hypermobility, contractures, and mild skeletal dysplasia. Fluorescent staining revealed an increase in TGF-β signaling, evidenced by an increase in nuclear pSMAD2 in the aortic wall. Our results are in line with those of prior reports demonstrating that Bgn-deficient male BALB/cA mice die from aortic rupture. In conclusion, BGN gene defects in humans cause an X-linked syndromic form of severe TAAD that is associated with preservation of elastic fibers and increased TGF-β signaling.Genet Med 19 4, 386-395

    Genetic Basis of Myocarditis: Myth or Reality?

    Get PDF
    n/
    corecore