10 research outputs found

    UPRmt activation improves pathological alterations in cellular models of mitochondrial diseases

    Get PDF
    Background: Mitochondrial diseases represent one of the most common groups of genetic diseases. With a prevalence greater than 1 in 5000 adults, such diseases still lack effective treatment. Current therapies are purely palliative and, in most cases, insufficient. Novel approaches to compensate and, if possible, revert mitochondrial dysfunction must be developed. Results: In this study, we tackled the issue using as a model fibroblasts from a patient bearing a mutation in the GFM1 gene, which is involved in mitochondrial protein synthesis. Mutant GFM1 fibroblasts could not survive in galactose restrictive medium for more than 3 days, making them the perfect screening platform to test several compounds. Tetracycline enabled mutant GFM1 fibroblasts survival under nutritional stress. Here we demonstrate that tetracycline upregulates the mitochondrial Unfolded Protein Response (UPR), a compensatory pathway regulating mitochondrial proteostasis. We additionally report that activation of UPR improves mutant GFM1 cellular bioenergetics and partially restores mitochondrial protein expression. Conclusions: Overall, we provide compelling evidence to propose the activation of intrinsic cellular compensatory mechanisms as promising therapeutic strategy for mitochondrial diseases.This work was supported by FIS PI16/00786 (2016) and FIS PI19/00377 (2019) grants, the Ministerio de Sanidad, Spain and the Fondo Europeo de Desarrollo Regional (FEDER Unión Europea), Spanish Ministry of Education, Culture and Sport. This activity has been co-financed by the European Regional Development Fund (ERDF) and by the Regional Ministry of Economic Transformation, Industry, Knowledge and Universities of the Junta de Andalucía, within the framework of the ERDF Andalusia operational program 2014–2020 Thematic objective "01—Reinforcement of research, technological development and innovation" through the reference research project CTS-5725 and PY18-850

    Neurodegeneration, Mitochondria, and Antibiotics

    Get PDF
    Neurodegenerative diseases are characterized by the progressive loss of neurons, synapses, dendrites, and myelin in the central and/or peripheral nervous system. Actual therapeutic options for patients are scarce and merely palliative. Although they affect millions of patients worldwide, the molecular mechanisms underlying these conditions remain unclear. Mitochondrial dysfunction is generally found in neurodegenerative diseases and is believed to be involved in the pathomechanisms of these disorders. Therefore, therapies aiming to improve mitochondrial function are promising approaches for neurodegeneration. Although mitochondrial-targeted treatments are limited, new research findings have unraveled the therapeutic potential of several groups of antibiotics. These drugs possess pleiotropic effects beyond their anti-microbial activity, such as anti-inflammatory or mitochondrial enhancer function. In this review, we will discuss the controversial use of antibiotics as potential therapies in neurodegenerative diseases.This project was supported by FIS PI19/00377 (2019) and FIS PI22/00142 (2022) grants, Instituto de Salud Carlos III, Spain; and the Fondo Europeo de Desarrollo Regional (FEDER Unión Europea), Spanish Ministry of Education, Culture, and Sport. This activity was co-financed by the European Regional Development Fund (ERDF) and by the Regional Ministry of Economic Transformation, Industry, Knowledge, and Universities of the Junta de Andalucía, within the framework of the ERDF Andalusia operational program 2014–2020 Thematic objective “01—Reinforcement of research, technological development and innovation” through the reference research project CTS-5725 and PY18-850.Peer reviewe

    Coenzyme Q10 Analogues: Benefits and Challenges for Therapeutics

    No full text
    © 2021 by the authors.Coenzyme Q10 (CoQ10 or ubiquinone) is a mobile proton and electron carrier of the mitochondrial respiratory chain with antioxidant properties widely used as an antiaging health supplement and to relieve the symptoms of many pathological conditions associated with mitochondrial dysfunction. Even though the hegemony of CoQ10 in the context of antioxidant-based treatments is undeniable, the future primacy of this quinone is hindered by the promising features of its numerous analogues. Despite the unimpeachable performance of CoQ10 therapies, problems associated with their administration and intraorganismal delivery has led clinicians and scientists to search for alternative derivative molecules. Over the past few years, a wide variety of CoQ10 analogues with improved properties have been developed. These analogues conserve the antioxidant features of CoQ10 but present upgraded characteristics such as water solubility or enhanced mitochondrial accumulation. Moreover, recent studies have proven that some of these analogues might even outperform CoQ10 in the treatment of certain specific diseases. The aim of this review is to provide detailed information about these Coenzyme Q10 analogues, as well as their functionality and medical applications.This work was supported by FIS PI16/00786 and FIS PI19/00377 grants, Instituto de Salud Carlos III, Ministerio de Sanidad, Spain and Fondo Europeo de Desarrollo Regional (FEDER Unión Europea), Ayudas para la Formación de Profesorado Universitario (FPU), Ministerio de Ciencia e innovación; and AEPMI (Asociación de Enfermos de Patología Mitocondrial) and ENACH (Asociación de enfermos de Neurodegeneración con Acumulación Cerebral de Hierro)

    Mitochondria and antibiotics: For good or for evil?

    No full text
    © 2021 by the authors.The discovery and application of antibiotics in the common clinical practice has undeniably been one of the major medical advances in our times. Their use meant a drastic drop in infectious diseases-related mortality and contributed to prolonging human life expectancy worldwide. Nevertheless, antibiotics are considered by many a double-edged sword. Their extensive use in the past few years has given rise to a global problem: antibiotic resistance. This factor and the increasing evidence that a wide range of antibiotics can damage mammalian mitochondria, have driven a significant sector of the medical and scientific communities to advise against the use of antibiotics for purposes other to treating severe infections. Notwithstanding, a notorious number of recent studies support the use of these drugs to treat very diverse conditions, ranging from cancer to neurodegenerative or mitochondrial diseases. In this context, there is great controversy on whether the risks associated to antibiotics outweigh their promising beneficial features. The aim of this review is to provide insight in the topic, purpose for which the most relevant findings regarding antibiotic therapies have been discussed.This work was supported by FIS PI16/00786 (2016) and FIS PI19/00377 (2019) grants, Ministerio de Sanidad, Spain and Fondo Europeo de Desarrollo Regional (FEDER Unión Europea), Spanish Ministry of Education, Culture and Sport. This activity has been co-financed by the European Regional Development Fund (ERDF) and by the Regional Ministry of Economic Transformation, Industry, Knowledge and Universities of the Junta de Andalucía, within the framework of the ERDF Andalusia operational program 2014–2020 Thematic objective “01—Reinforcement of research, technological develop-ment and innovation” through the reference research project CTS-5725 and PY18-850. We acknowledge the support of “Ayudas para la Formación de Profesorado Universitario” (FPU/MINECO), AEPMI (Asociación de Enfermos de Patología Mitocondrial), ENACH (Asociación de enfermos de Neurodegeneración con Acumulación Cerebral de Hierro), FEDER (Federación Española de Enfermedades Raras), Yo Nemálínica Association, KAT6A Association, Fundación MERCK Salud and Fundación MEHUER/Colegio Oficial de Farmacéuticos de Sevilla

    Coenzyme Q10: Novel Formulations and Medical Trends

    No full text
    © 2020 by the authors.The aim of this review is to shed light over the most recent advances in Coenzyme Q10 (CoQ10) applications as well as to provide detailed information about the functions of this versatile molecule, which have proven to be of great interest in the medical field. Traditionally, CoQ10 clinical use was based on its antioxidant properties; however, a wide range of highly interesting alternative functions have recently been discovered. In this line, CoQ10 has shown pain-alleviating properties in fibromyalgia patients, a membrane-stabilizing function, immune system enhancing ability, or a fundamental role for insulin sensitivity, apart from potentially beneficial properties for familial hypercholesterolemia patients. In brief, it shows a remarkable amount of functions in addition to those yet to be discovered. Despite its multiple therapeutic applications, CoQ10 is not commonly prescribed as a drug because of its low oral bioavailability, which compromises its efficacy. Hence, several formulations have been developed to face such inconvenience. These were initially designed as lipid nanoparticles for CoQ10 encapsulation and distribution through biological membranes and eventually evolved towards chemical modifications of the molecule to decrease its hydrophobicity. Some of the most promising formulations will also be discussed in this review.This work was supported by FIS PI16/00786 and FIS PI19/00377 grants, Instituto de Salud Carlos III, Ministerio de Sanidad, Spain, and Fondo Europeo de Desarrollo Regional (FEDER Unión Europea), Ayudas para la Formación de Profesorado Universitario (FPU), Ministerio de Ciencia e innovación, AEPMI (Asociación de Enfermos de Patología Mitocondrial), and ENACH (Asociación de enfermos de Neurodegeneración con Acumulación Cerebral de Hierro)

    From Mitochondria to Atherosclerosis: The Inflammation Path

    No full text
    © 2021 by the authorsInflammation is a key process in metazoan organisms due to its relevance for innate defense against infections and tissue damage. However, inflammation is also implicated in pathological processes such as atherosclerosis. Atherosclerosis is a chronic inflammatory disease of the arterial wall where unstable atherosclerotic plaque rupture causing platelet aggregation and thrombosis may compromise the arterial lumen, leading to acute or chronic ischemic syndromes. In this review, we will focus on the role of mitochondria in atherosclerosis while keeping inflammation as a link. Mitochondria are the main source of cellular energy. Under stress, mitochondria are also capable of controlling inflammation through the production of reactive oxygen species (ROS) and the release of mitochondrial components, such as mitochondrial DNA (mtDNA), into the cytoplasm or into the extracellular matrix, where they act as danger signals when recognized by innate immune receptors. Primary or secondary mitochondrial dysfunctions are associated with the initiation and progression of atherosclerosis by elevating the production of ROS, altering mitochondrial dynamics and energy supply, as well as promoting inflammation. Knowing and understanding the pathways behind mitochondrial-based inflammation in atheroma progression is essential to discovering alternative or complementary treatments.This work was supported by the FIS PI16/00786 (2016) and FIS PI19/00377 (2019), Instituto de Salud Carlos III, Ministerio de Sanidad, Spain, and Fondo Europeo de Desarrollo Regional (FEDER Unión Europea), Spanish Ministry of Education, Culture and Sport, Spain. This activity has been co-financed by the European Regional Development Fund (ERDF) and by the Regional Ministry of Economic Transformation, Industry, Knowledge and Universities of the Junta de Andalucía, within the framework of the ERDF Andalusia operational program 2014–2020 thematic objective “01—Reinforcement of research, technological development and innovation” through the reference research projects CTS-5725 and PY18-850

    Atherosclerosis and coenzyme q10

    No full text
    © 2019 by the authors.Atherosclerosis is the most common cause of cardiac deaths worldwide. Classically, atherosclerosis has been explained as a simple arterial lipid deposition with concomitant loss of vascular elasticity. Eventually, this condition can lead to consequent blood flow reduction through the affected vessel. However, numerous studies have demonstrated that more factors than lipid accumulation are involved in arterial damage at the cellular level, such as inflammation, autophagy impairment, mitochondrial dysfunction, and/or free-radical overproduction. In order to consider the correction of all of these pathological changes, new approaches in atherosclerosis treatment are necessary. Ubiquinone or coenzyme Q10 is a multifunctional molecule that could theoretically revert most of the cellular alterations found in atherosclerosis, such as cholesterol biosynthesis dysregulation, impaired autophagy flux and mitochondrial dysfunction thanks to its redox and signaling properties. In this review, we will show the latest advances in the knowledge of the relationships between coenzyme Q10 and atherosclerosis. In addition, as atherosclerosis phenotype is closely related to aging, it is reasonable to believe that coenzyme Q10 supplementation could be beneficial for both conditions.This work was supported by FIS PI16/00786 grant, Ministerio de Sanidad, Spain and Fondo Europeo de Desarrollo Regional (FEDER-Unión Europea), Spanish Ministry of Education, Culture and Sport, “Ayudas para la Formación de Profesorado Universitario” (FPU) and AEPMI (Asociación de Enfermos de Patología Mitocondrial) and ENACH (Asociación de enfermos de Neurodegeneración con Acumulación Cerebral de Hierro)

    Activation of the Mitochondrial Unfolded Protein Response: A New Therapeutic Target?

    Get PDF
    Mitochondrial dysfunction is a key hub that is common to many diseases. Mitochondria’s role in energy production, calcium homeostasis, and ROS balance makes them essential for cell survival and fitness. However, there are no effective treatments for most mitochondrial and related diseases to this day. Therefore, new therapeutic approaches, such as activation of the mitochondrial unfolded protein response (UPRmt), are being examined. UPRmt englobes several compensation processes related to proteostasis and antioxidant mechanisms. UPRmt activation, through an hormetic response, promotes cell homeostasis and improves lifespan and disease conditions in biological models of neurodegenerative diseases, cardiopathies, and mitochondrial diseases. Although UPRmt activation is a promising therapeutic option for many conditions, its overactivation could lead to non-desired side effects, such as increased heteroplasmy of mitochondrial DNA mutations or cancer progression in oncologic patients. In this review, we present the most recent UPRmt activation therapeutic strategies, UPRmt’s role in diseases, and its possible negative consequences in particular pathological conditions

    Compilación de Proyectos de Investigacion de 1984-2002

    No full text
    Instituto Politecnico Nacional. UPIICS
    corecore