6 research outputs found

    Modelling Dependency Structures Produced by the Introduction of a Flipped Classroom

    Get PDF
    Teaching processes have been changing in the lasts few decades from a traditional lecture-example-homework format to more active strategies to engage the students in the learning process. One of the most popular methodologies is the flipped classroom, where traditional structure of the course is turned over by moving out of the classroom, most basic knowledge acquisition. However, due to the workload involved in this kind of methodology, an objective analysis of the results should be carried out to assess whether the lecturer’s workload is worth the effort or not. In this paper, we compare the results obtained from two different methodologies: traditional lecturing and flipped classroom methodology, in terms of some performance indicators and an attitudinal survey, in an introductory statistics course for engineering students. Finally, we analysed the changes in the relationships among variables of interest when the traditional teaching was moved to a flipped classroom by using Bayesian networks

    The Role of Cultural Landscapes in the Delivery of Provisioning Ecosystem Services in Protected Areas

    Get PDF
    The aim of this paper is to assess and highlight the significance of cultural landscapes in protected areas, considering both biodiversity and the delivery of provisioning ecosystem services. In order to do that, we analyzed 26 protected areas in Andalusia (Spain), all of them Natural or National Parks, regarding some of their ecosystem services (agriculture, livestock grazing, microclimate regulation, environmental education and tourism) and diversity of the four terrestrial vertebrate classes: amphibians, reptiles, mammals, and birds. A cluster analysis was also run in order to group the 26 protected areas according to their dominant landscape. The results show that protected areas dominated by dehesa (a heterogeneous system containing different states of ecological maturity), or having strong presence of olive groves, present a larger area of delivery of provisioning ecosystem services, on average. These cultural landscapes play an essential role not only for biodiversity conservation but also as providers of provisioning ecosystem services

    A Comparison of Machine-Learning Methods to Select Socioeconomic Indicators in Cultural Landscapes

    Get PDF
    Cultural landscapes are regarded to be complex socioecological systems that originated as a result of the interaction between humanity and nature across time. Cultural landscapes present complex-system properties, including nonlinear dynamics among their components. There is a close relationship between socioeconomy and landscape in cultural landscapes, so that changes in the socioeconomic dynamic have an effect on the structure and functionality of the landscape. Several numerical analyses have been carried out to study this relationship, with linear regression models being widely used. However, cultural landscapes comprise a considerable amount of elements and processes, whose interactions might not be properly captured by a linear model. In recent years, machine-learning techniques have increasingly been applied to the field of ecology to solve regression tasks. These techniques provide sound methods and algorithms for dealing with complex systems under uncertainty. The term ‘machine learning’ includes a wide variety of methods to learn models from data. In this paper, we study the relationship between socioeconomy and cultural landscape (in Andalusia, Spain) at two different spatial scales aiming at comparing different regression models from a predictive-accuracy point of view, including model trees and neural or Bayesian networks

    Analyzing Uncertainty in Complex Socio-Ecological Networks

    Get PDF
    Socio-ecological systems are recognized as complex adaptive systems whose multiple interactions might change as a response to external or internal changes. Due to its complexity, the behavior of the system is often uncertain. Bayesian networks provide a sound approach for handling complex domains endowed with uncertainty. The aim of this paper is to analyze the impact of the Bayesian network structure on the uncertainty of the model, expressed as the Shannon entropy. In particular, three strategies for model structure have been followed: naive Bayes (NB), tree augmented network (TAN) and network with unrestricted structure (GSS). Using these network structures, two experiments are carried out: (1) the impact of the Bayesian network structure on the entropy of the model is assessed and (2) the entropy of the posterior distribution of the class variable obtained from the different structures is compared. The results show that GSS constantly outperforms both NB and TAN when it comes to evaluating the uncertainty of the entire model. On the other hand, NB and TAN yielded lower entropy values of the posterior distribution of the class variable, which makes them preferable when the goal is to carry out predictions

    Modeling Semi-Arid River-Aquifer Systems With Bayesian Networks and Artificial Neural Networks

    Get PDF
    In semiarid areas, precipitations usually appear in the form of big and brief floods, which affect the aquifer through water infiltration, causing groundwater temperature changes. These changes may have an impact on the physical, chemical and biological processes of the aquifer and, thus, modeling the groundwater temperature variations associated with stormy precipitation episodes is essential, especially since this kind of precipitation is becoming increasingly frequent in semiarid regions. In this paper, we compare the predictive performance of two popular tools in statistics and machine learning, namely Bayesian networks (BNs) and artificial neural networks (ANNs), in modeling groundwater temperature variation associated with precipitation events. More specifically, we trained a total of 2145 ANNs with different node configurations, from one to five layers. On the other hand, we trained three different BNs using different structure learning algorithms. We conclude that, while both tools are equivalent in terms of accuracy for predicting groundwater temperature drops, the computational cost associated with the estimation of Bayesian networks is significantly lower, and the resulting BN models are more versatile and allow a more detailed analysis

    An Empirical Analysis of the Impact of Continuous Assessment on the Final Exam Mark

    Get PDF
    Since the Bologna Process was adopted, continuous assessment has been a cornerstone in the curriculum of most of the courses in the different degrees offered by the Spanish Universities. Continuous assessment plays an important role in both students’ and lecturers’ academic lives. In this study, we analyze the effect of the continuous assessment on the performance of the students in their final exams in courses of Statistics at the University of Almería. Specifically, we study if the performance of a student in the continuous assessment determines the score obtained in the final exam of the course in such a way that this score can be predicted in advance using the continuous assessment performance as an explanatory variable. After using and comparing some powerful statistical procedures, such as linear, quantile and logistic regression, artificial neural networks and Bayesian networks, we conclude that, while the fact that a student passes or fails the final exam can be properly predicted, a more detailed forecast about the grade obtained is not possible
    corecore