12 research outputs found

    A Simple and Fast Method for the Formation and Downstream Processing of Cancer-Cell-Derived 3D Spheroids: An Example Using Nicotine-Treated A549 Lung Cancer 3D Spheres.

    Get PDF
    Although 2D in vitro cancer cell cultures have been used for decades as a first line-of-research tool to investigate antitumoral drugs and treatments, their use presents many drawbacks, including the poor resemblance of such cultures to the characteristics of in vivo tumors. To mitigate these drawbacks, 3D culture models have emerged as a more representative alternative. Cancer cells cultured as 3D structures have the advantage of resembling solid tumors in their architecture and in their resistance to chemotherapeutic drugs, in part because of restrained drug penetration. Additionally, these 3D structures create a more physiological environment for the study of immune cell invasion and migration, comparable to solid tumors. In this paper, we describe a fast and cost-effective step-by-step protocol for the generation of 3D spheres using ultra-low-attachment (ULA) multiwell plates, which can be incorporated into the normal workflow of any laboratory. Using this protocol, spheroids of different human cancer cell lines can be obtained and can then be characterized on the basis of their morphology, viability, and expression of specific markers

    Contribution of the α5 nAChR Subunit and α5SNP to Nicotine-Induced Proliferation and Migration of Human Cancer Cells.

    Get PDF
    Nicotine in tobacco is known to induce tumor-promoting effects and cause chemotherapy resistance through the activation of nicotinic acetylcholine receptors (nAChRs). Many studies have associated the α5 nicotinic receptor subunit (α5), and a specific polymorphism in this subunit, with (i) nicotine administration, (ii) nicotine dependence, and (iii) lung cancer. The α5 gene CHRNA5 mRNA is upregulated in several types of cancer, including lung, prostate, colorectal, and stomach cancer, and cancer severity is correlated with smoking. In this study, we investigate the contribution of α5 in the nicotine-induced cancer hallmark functions proliferation and migration, in breast, colon, and prostate cancer cells. Nine human cell lines from different origins were used to determine nAChR subunit expression levels. Then, selected breast (MCF7), colon (SW480), and prostate (DU145) cancer cell lines were used to investigate the nicotine-induced effects mediated by α5. Using pharmacological and siRNA-based experiments, we show that α5 is essential for nicotine-induced proliferation and migration. Additionally, upon downregulation of α5, nicotine-promoted expression of EMT markers and immune regulatory proteins was impaired. Moreover, the α5 polymorphism D398N (α5SNP) caused a basal increase in proliferation and migration in the DU145 cell line, and the effect was mediated through G-protein signaling. Taken together, our results indicate that nicotine-induced cancer cell proliferation and migration are mediated via α5, adding to the characterization of α5 as a putative therapeutical target

    Plasma levels of mitochondrial and nuclear DNA in patients with massive pulmonary embolism in the emergency department: A prospective cohort study

    Get PDF
    Introduction: Cell-free plasma mitochondrial DNA (mt-DNA) and nuclear DNA (n-DNA) are biomarkers with prognostic utility in conditions associated with a high rate of cell death. This exploratory study aimed to determine the plasma levels of both nucleic acids in patients with massive and submassive pulmonary embolism (PE) and to compare them with other biomarkers, such as heart-type fatty acid-binding protein (H-FABP) and troponin I (Tn-I) Methods: This was a prospective observational study of 37 consecutive patients with massive PE, 37 patients with submassive PE, and 37 healthy subjects. Quantifications of plasma mt-DNA and n-DNA with real-time quantitative polymerase chain reaction (PCR), and plasma H-FABP and Tn-I by commercial assays, were done on blood samples drawn within 4 hours after presentation at the emergency department. Results: Plasma mt-DNA and n-DNA concentrations were much higher in patients with massive PE (median, 2,970 GE/ml; interquartile range (IQR), 1,050 to 5,485; and 3,325 GE/ml, IQR: 1,080 to 5,790, respectively) than in patients with submassive PE (870 GE/ml and 1,245 GE/ml, respectively; P < 0.01) or controls (185 GE/ml and 520 GE/ml, respectively). Eighteen patients with massive PE died of a PE-related cause by day 15 of observation. Plasma mt- DNA and n-DNA values were 2.3-fold and 1.9-fold higher in the subgroup of nonsurviving patients than in survivors. H-FABP and Tn-I values were also higher in patients with massive PE who died (7.3 ng/ml and 0.023 ng/ml, respectively) than in those who survived (6.4 ng/ml, and 0.016 ng/ml, respectively). By receiver operating curve (ROC) analysis, the best cutoff values for predicting 15-day mortality were 3,380 GE/ml for mt-DNA, 6.8 ng/ml for H-FABP, 3,625 GE/ml for n-DNA, and 0.020 ng/ml for Tn-I, based on the calculated areas under the curve (AUCs) of 0.89 (95% confidence interval (CI), 0.78 to 0.99), 0.76 (95% CI, 0.69 to 093), 0.73 (95% CI, 0.58 to 0.91), and 0.59 (95% CI, 0.41 to 0.79), respectively. By stepwise logistic regression, a plasma mt-DNA concentration greater than 3,380 GE/ml (adjusted odds ratio (OR), 8.22; 95% CI, 1.72 to 39.18; P 6.8 ng/ml (OR, 5.36; 95% CI, 1.06 to 27.08; P < 0.01) were the only independent predictors of mortality. Conclusions: mt-DNA and H-FBAP might be promising markers for predicting 15-day mortality in massive PE, with mt-DNA having better prognostic accuracy.This work was supported partially by grants from Plan Nacional I+D+I (SAF 2008-05347 and SAF2011-23575) and from Fundación Mutua Madrileña de Investigación Biomédica (2008 and 2011) to Francisco Arnalich and Carmen Montie

    Functional sites involved in modulation of the GABAA receptor channel by the intravenous anesthetics propofol, etomidate and pentobarbital.

    No full text
    GABAA receptors are the major inhibitory neurotransmitter receptors in the brain and are the target for many clinically important drugs. Among the many modulatory compounds are also the intravenous anesthetics propofol and etomidate, and barbiturates. The mechanism of receptor modulation by these compounds is of mayor relevance. The site of action of these compounds has been located to subunit interfaces in the intra-membrane region of the receptor. In α1β2γ2 GABAA receptors there are five such interfaces, two β+/α- and one each of α+/β-, α+/γ- and γ+/β- subunit interfaces. We have used reporter mutations located in the second trans-membrane region in different subunits to probe the effects of changes at these subunit interfaces on modulation by propofol, etomidate and pentobarbital. We provide evidence for the fact that each of these compounds either modulates through a different set of subunit interfaces or through the same set of subunit interfaces to a different degree. As a GABAA receptor pentamer harbors two β+/α- subunit interfaces, we used concatenated receptors to dissect the contribution of individual interfaces and show that only one of these interfaces is important for receptor modulation by etomidate

    Molecular mode of action of CGS 9895 at α1 β2 γ2 GABAA receptors.

    Get PDF
    γ-aminobutyric type A (GABAA ) receptors are the main inhibitory neurotransmitter receptors in the brain and are targets for numerous clinically important drugs such as benzodiazepines, anxiolytics, and anesthetics. Previously, pyrazoloquinoline 2-p-methoxyphenylpyrazolo [4,3-c] quinolin-3(5H)-one (CGS 9895) was described as a positive allosteric modulator acting through the α+/β- interface in the extracellular domain of GABAA receptors. The localization of the binding site was based on a steric hindrance approach, rather than on direct effects of point mutations. In this study we further characterized modulation by this compound which seems to have multiple sites of action. We investigated GABAA receptors expressed in Xenopus laevis oocytes using voltage-clamp electrophysiology. We have identified the α1 Y209 residue at the α+/β- interface as a key residue for CGS 9895 modulation. In addition, the interaction between this residue and various structural analogs was characterized, allowing tentative positioning of CGS 9895 versus α1 Y209 (rat sequence). Not all compounds were found to be sensitive to mutations at the α1 Y209 residue. In addition, the interaction of CGS 9895 with flurazepam was characterized. Flurazepam is hypothesized to act at the same subunit interface in the extracellular domain. We also provide evidence that the GABAA receptor harbors additional modulatory sites for CGS 9895 at each of the subunit interfaces in the transmembrane domain. GABAA receptors are the main inhibitory neurotransmitter receptors in the brain and are targets for numerous clinically important drugs such as benzodiazepines, anxiolytics and anesthetics. We have identified the α1 Y209 residue present at the extracellular α+/β- subunit interface as a key residue for the positive allosteric modulation of the GABAA receptor by CGS 9895. This receptor harbors additional modulatory sites for this compound at subunit interfaces in the transmembrane domain

    Xenopus Oocytes: Optimized Methods for Microinjection, Removal of Follicular Cell Layers, and Fast Solution Changes in Electrophysiological Experiments.

    No full text
    The Xenopus oocyte as a heterologous expression system for proteins, was first described by Gurdon et al.(1) and has been widely used since its discovery (References 2 - 3, and references therein). A characteristic that makes the oocyte attractive for foreign channel expression is the poor abundance of endogenous ion channels(4). This expression system has proven useful for the characterization of many proteins, among them ligand-gated ion channels. The expression of GABAA receptors in Xenopus oocytes and their functional characterization is described here, including the isolation of oocytes, microinjections with cRNA, the removal of follicular cell layers, and fast solution changes in electrophysiological experiments. The procedures were optimized in this laboratory(5,6) and deviate from the ones routinely used(7-9). Traditionally, denuded oocytes are prepared with a prolonged collagenase treatment of ovary lobes at RT, and these denuded oocytes are microinjected with mRNA. Using the optimized methods, diverse membrane proteins have been expressed and studied with this system, such as recombinant GABAA receptors(10-12), human recombinant chloride channels(13), Trypanosome potassium channels(14), and a myo-inositol transporter(15, 16). The methods detailed here may be applied to the expression of any protein of choice in Xenopus oocytes, and the rapid solution change can be used to study other ligand-gated ion channels

    Positive modulation of synaptic and extrasynaptic GABAA receptors by an antagonist of the high affinity benzodiazepine binding site.

    No full text
    GABAA receptors are the major inhibitory neurotransmitter receptors in the brain and are the target for many clinically important drugs such as the benzodiazepines. Benzodiazepines act at the high-affinity binding site at the α+/γ- subunit interface. Previously, an additional low affinity binding site for diazepam located in the transmembrane (TM) domain has been described. The compound SJM-3 was recently identified in a prospective screening of ligands for the benzodiazepine binding site and investigated for its site of action. We determined the binding properties of SJM-3 at GABAA receptors recombinantly expressed in HEK-cells using radioactive ligand binding assays. Impact on function was assessed in Xenopus laevis oocytes with electrophysiological experiments using the two-electrode voltage clamp method. SJM-3 was shown to act as an antagonist at the α+/γ- site. At the same time it strongly potentiated GABA currents via the binding site for diazepam in the transmembrane domain. Mutation of a residue in M2 of the α subunit strongly reduced receptor modulation by SJM-3 and a homologous mutation in the β subunit abolished potentiation. SJM-3 acts as a more efficient modulator than diazepam at the site in the trans-membrane domain. In contrast to low concentrations of benzodiazepines, SJM-3 modulates both synaptic and extrasynaptic receptors. A detailed exploration of the membrane site may provide the basis for the design and identification of subtype-selective modulatory drugs

    α subunits in GABAA receptors are dispensable for GABA and diazepam action.

    Get PDF
    The major isoform of the GABAA receptor is α1β2γ2. The binding sites for the agonist GABA are located at the β2+/α1- subunit interfaces and the modulatory site for benzodiazepines at α1+/γ2-. In the absence of α1 subunits, a receptor was formed that was gated by GABA and modulated by diazepam similarly. This indicates that alternative subunits can take over the role of the α1 subunits. Point mutations were introduced in β2 or γ2 subunits at positions homologous to α1- benzodiazepine binding and GABA binding positions, respectively. From this mutation work we conclude that the site for GABA is located at a β2+/β2- subunit interface and that the diazepam site is located at the β2+/γ2- subunit interface. Computational docking leads to a structural hypothesis attributing this non-canonical interaction to a binding mode nearly identical with the one at the α1+/γ2- interface. Thus, the β2 subunit can take over the role of the α1 subunit for the formation of both sites, its minus side for the GABA binding site and its plus side for the diazepam binding site

    Human α6β4 nicotinic acetylcholine receptor: heterologous expression and agonist behavior provide insights into the immediate binding site.

    No full text
    Study of α6β4 nicotinic acetylcholine receptors (nAChRs) as a pharmacological target has recently gained interest because of their involvement in analgesia, control of catecholamine secretion, dopaminergic pathways, and aversive pathways. However, an extensive characterization of the human α6β4 nAChRs has been vitiated by technical difficulties resulting in poor receptor expression. In 2020, Knowland and collaborators identified BARP (β-anchoring and regulatory protein), a previously known voltage-gated calcium channel suppressor, as a novel human α6β4 chaperone. Here we establish that co-expression of human BARP with human α6β4 in Xenopus oocytes, resulted in the functional expression of human α6β4 receptors with ACh-elicited currents that allow an in-depth characterization of the receptor using two electrode voltage-clamp electrophysiology together with diverse agonists and receptor mutations. We report: (1) an extended pharmacological characterization of the receptor, and (2) key residues for agonist-activity located in or near the first shell of the binding pocket. Significance Statement The human α6β4 nAChR has attained increased interest because of its involvement in diverse physiological processes and diseases. Although recognized as a pharmacological target, development of specific agonists has been hampered by limited knowledge of its structural characteristics and by challenges in expressing the receptor. By including the chaperone BARP for enhanced expression and employing different ligands, we have studied the pharmacology of α6β4, providing insight into receptor residues and structural requirements for ligands important to consider for agonist-induced activation
    corecore