7 research outputs found

    Structural and Evolutionary Analyses Show Unique Stabilization Strategies in the Type IV Pili of Clostridium difficile

    Get PDF
    Type IV pili are produced by many pathogenic Gram-negative bacteria and are important for processes as diverse as twitching motility, biofilm formation, cellular adhesion and horizontal gene transfer. However, many Gram-positive species, including C. difficile, also produce Type IV pili. Here, we identify the major subunit of the Type IV pili of C. difficile, PilA1, and describe multiple three-dimensional structures of PilA1, demonstrating the diversity found in three strains of C. difficile. We also model the incorporation of both PilA1 and a minor pilin, PilJ, into the pilus fiber. Although PilA1 contains no cysteine residues, and therefore cannot form the disulfide bonds found in all Gram-negative Type IV pilins, it adopts unique strategies to achieve a typical pilin fold. The structures of PilA1 and PilJ exhibit similarities with the Type IVb pilins from Gram-negative bacteria that suggest that the Type IV pili of C. difficile are involved in microcolony formation

    Structure of \u3ci\u3eClostridium difficile\u3c/i\u3e PilJ Exhibits Unprecedented Divergence from Known Type IV Pilins

    Get PDF
    Type IV pili are produced by many pathogenic Gram-negative bacteria and are important for processes as diverse as twitching motility, cellular adhesion, and colonization. Recently, there has been an increased appreciation of the ability of Gram-positive species, including Clostridium difficile, to produce Type IV pili. Here we report the first three-dimensional structure of a Grampositive Type IV pilin, PilJ, demonstrate its incorporation into Type IV pili, and offer insights into how the Type IV pili of C. difficile may assemble and function. PilJ has several unique structural features, including a dual-pilin fold and the incorporation of a structural zinc ion. We show that PilJ is incorporated into Type IV pili in C. difficile and present a model in which the incorporation of PilJ into pili exposes the C-terminal domain of PilJ to create a novel interaction surface

    Structure of \u3ci\u3eClostridium difficile\u3c/i\u3e PilJ Exhibits Unprecedented Divergence from Known Type IV Pilins

    Get PDF
    Type IV pili are produced by many pathogenic Gram-negative bacteria and are important for processes as diverse as twitching motility, cellular adhesion, and colonization. Recently, there has been an increased appreciation of the ability of Gram-positive species, including Clostridium difficile, to produce Type IV pili. Here we report the first three-dimensional structure of a Grampositive Type IV pilin, PilJ, demonstrate its incorporation into Type IV pili, and offer insights into how the Type IV pili of C. difficile may assemble and function. PilJ has several unique structural features, including a dual-pilin fold and the incorporation of a structural zinc ion. We show that PilJ is incorporated into Type IV pili in C. difficile and present a model in which the incorporation of PilJ into pili exposes the C-terminal domain of PilJ to create a novel interaction surface

    Virtual Lab Demonstrations Improve Students ’ Mastery of Basic Biology Laboratory Techniques

    No full text
    Biology laboratory classes are designed to teach concepts and techniques through experiential learning. Students who have never performed a technique must be guided through the process, which is often difficult to standardize across multiple lab sections. Visual demonstration of laboratory procedures is a key element in teaching pedagogy. The main goals of the study were to create videos explaining and demonstrating a variety of lab techniques that would serve as teaching tools for undergraduate and graduate lab courses and to assess the impact of these videos on student learning. Demonstrations of individual laboratory procedures were videotaped and then edited with iMovie. Narration for the videos was edited with Audacity. Undergraduate students were surveyed anonymously prior to and following screening to assess the impact of the videos on student lab performance by completion of two Participant Perception Indicator surveys. A total of 203 and 171 students completed the pre- and posttesting surveys, respectively. Statistical analyses were performed to compare student perceptions of knowledge of, confidence in, and experience with the lab techniques before and after viewing the videos. Eleven demonstrations were recorded. Chi-square analysis revealed a significant increase in the number of students reporting increased knowledge of, confidence in, and experience with the lab techniques after viewing the videos. Incorporation of instructional videos as prelaboratory exercises has the potential to standardize techniques and to promote successful experimental outcomes. Vol. 1

    Type IV pili promote early biofilm formation by Clostridium difficile

    Get PDF
    Increasing morbidity and mortality from Clostridium difficile infection (CDI) present an enormous challenge to healthcare systems. Clostridium difficile express type IV pili (T4P), but their function remains unclear. Many chronic and recurrent bacterial infections result from biofilms, surface-associated bacterial communities embedded in an extracellular matrix. CDI may be biofilm mediated; T4P are important for biofilm formation in a number of organisms. We evaluate the role of T4P in C. difficile biofilm formation using RNA sequencing, mutagenesis and complementation of the gene encoding the major pilin pilA1, and microscopy. RNA sequencing demonstrates that, in comparison to other growth phenotypes, C. difficile growing in a biofilm has a distinct RNA expression profile, with significant differences in T4P gene expression. Microscopy of T4P-expressing and T4P-deficient strains suggests that T4P play an important role in early biofilm formation. A non-piliated pilA1 mutant forms an initial biofilm of significantly reduced mass and thickness in comparison to the wild type. Complementation of the pilA1 mutant strain leads to formation of a biofilm which resembles the wild-type biofilm. These findings suggest that T4P play an important role in early biofilm formation. Novel strategies for confronting biofilm infections are emerging; our data suggest that similar strategies should be investigated in CDI

    Safety, tolerability, and clinical outcomes of hydroxychloroquine for hospitalized patients with coronavirus 2019 disease.

    No full text
    BackgroundSevere acute respiratory coronavirus 2 (SARS-CoV-2) has caused a devastating worldwide pandemic. Hydroxychloroquine (HCQ) has in vitro activity against SARS-CoV-2, but clinical data supporting HCQ for coronavirus disease 2019 (COVID-19) are limited.MethodsThis was a retrospective cohort study of hospitalized patients with COVID-19 who received ≥1 dose of HCQ at two New York City hospitals. We measured incident Grade 3 or 4 blood count and liver test abnormalities, ventricular arrhythmias, and vomiting and diarrhea within 10 days after HCQ initiation, and the proportion of patients who completed HCQ therapy. We also describe changes in Sequential Organ Failure Assessment hypoxia scores between baseline and day 10 after HCQ initiation and in-hospital mortality.ResultsNone of the 153 hospitalized patients with COVID-19 who received HCQ developed a sustained ventricular tachyarrhythmia. Incident blood count and liver test abnormalities occurred in ConclusionsHCQ appears to be reasonably safe and tolerable in most hospitalized patients with COVID-19. However, nearly one-half of patients did not improve with this treatment, highlighting the need to evaluate HCQ and alternate therapies in randomized trials
    corecore