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Abstract 

Increasing morbidity and mortality from Clostridium difficile infection (CDI) present an 
enormous challenge to healthcare systems. Clostridium difficile express type IV pili (T4P), but 
their function remains unclear. Many chronic and recurrent bacterial infections result from 
biofilms, surface-associated bacterial communities embedded in an extracellular matrix. CDI 
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may be biofilm mediated; T4P are important for biofilm formation in a number of organisms. We 
evaluate the role of T4P in C. difficile biofilm formation using RNA sequencing, mutagenesis 
and complementation of the gene encoding the major pilin pilA1, and microscopy. RNA 
sequencing demonstrates that, in comparison to other growth phenotypes, C. difficile growing in 
a biofilm has a distinct RNA expression profile, with significant differences in T4P gene 
expression. Microscopy of T4P-expressing and T4P-deficient strains suggests that T4P play an 
important role in early biofilm formation. A non-piliated pilA1 mutant forms an initial biofilm of 
significantly reduced mass and thickness in comparison to the wild type. Complementation of the 
pilA1 mutant strain leads to formation of a biofilm which resembles the wild-type biofilm. These 
findings suggest that T4P play an important role in early biofilm formation. Novel strategies for 
confronting biofilm infections are emerging; our data suggest that similar strategies should be 
investigated in CDI. 

Keywords: Clostridium difficile, type IV pili, biofilm 

 

INTRODUCTION 

Clostridium difficile is a Gram-positive spore-forming obligate anaerobe, first isolated from the 
stool of newborn infants in 1935 (Hall and O'Toole 1935). Clostridium difficile infection (CDI) 
is the leading cause of infectious hospital-acquired gastrointestinal illness in the developed world 
(Musher et al.2006; McFarland 2009). The disease is toxin mediated, ranging in severity from 
mild diarrhea to toxic megacolon, and can result in death (Bartlett and Gerding 2008). The 
frequency and severity of CDI are increasing rapidly in the United States and globally (Kelly and 
LaMont 2008); a recent report estimates that in 2011 CDI was responsible for almost half a 
million infections and approximately 29 000 deaths in the United States (Lessa et al.2015). 
Improved methods for preventing and treating CDI will be crucial for reducing morbidity and 
mortality from this disease. 

Bacteria commonly grow as biofilms, surface-associated communities embedded in a 
polysaccharide-rich substance; this mode of growth is critical to chronic and recurrent infections. 
Similarities between biofilm infections and CDI suggest that CDI is biofilm mediated. Both 
biofilm infections and CDIs are surface associated: while biofilms form on surfaces varied as 
prosthetic implants and the interiors of pipes, C. difficile infects the colon surface. Like many 
bacteria known to form biofilms, C. difficile employs quorum sensing as a means of cell–cell 
communication (Davies et al.1998; Carter et al.2005; Lee and Song 2005; Yang et al.2014; 
Omer Bendori et al.2015). Finally, biofilms are well known to allow their constituents to resist 
antibiotic treatment (Olsen 2015), and at times CDI does not respond to, or recurs after, 
appropriate antibiotic therapy. Although the precise mechanisms of CDI treatment resistance and 
infection relapse are currently unknown, they may be related to the formation of a C. difficile 
biofilm. Cells growing in a biofilm have a different phenotype compared to their planktonic 
counterparts. Some cells deep within a biofilm are relatively nutrient deprived and therefore slow 
or non-growing, which reduces susceptibility to antimicrobials (Becker et al.2001). 
Determination of the phenotype of C. difficile in CDI may allow for better-targeted therapies. For 
example, compounds that disrupt the extracellular matrix of biofilms have demonstrated 
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feasibility for reducing bacterial biofilms produced by clinically relevant organisms (Lu and 
Collins 2007). If C. difficile has growth characteristic of a biofilm in human infection, then study 
of these compounds could lead to enhancements in the efficacy of antimicrobials. Vaccines 
based on biofilm-specific antigens have been reported and used successfully in animal models of 
Staphylococcus aureus osteomyelitis and Haemophilus influenzae otitis media (Brady et al.2011; 
Novotny et al.2015). 

Type IV pili (T4P) are a particular type of bacterial surface appendage that mediate adherence, 
colonization, biofilm formation, DNA transfer and twitching motility (Craig, Pique and Tainer 
2004), among other functions; they have been well characterized in Gram-negative bacteria, and 
more recently described in Gram-positive bacteria. Gram-positive T4P were first recognized in 
Ruminococcus albus (Rakotoarivonina et al.2002), and were subsequently observed in C. 

perfringens (Varga et al.2006). Genes for T4P were identified in the C. difficile genome (Varga 
et al.2006), although fimbrial structures on C. difficile, resembling T4P, were observed by 
electron microscopy nearly two decades previously (Borriello, Davies and Barclay 1988). The 
T4P structural subunits are called pilins; C. difficile T4P are composed primarily of PilA1 pilin 
(Piepenbrink et al.2015). The C. difficile genome encodes genes for up to nine pilins, as well as 
the requisite assembly and scaffolding proteins, organized into three gene clusters as previously 
described by our lab (Maldarelli et al.2014). A complex nanomachine assembles pilin monomers 
into filaments that can extend several micrometers from the bacterial cell (Craig, Pique and 
Tainer 2004). In many bacterial species, T4P can also retract; the energy for extension and 
retraction are provided by distinct ATPases (Whitchurch et al.1991). T4P in Gram-negative 
organisms, such as enteropathogenic Escherichia coli, Vibrio cholerae and Neisseria 

meningitidis, are critical for colonization and pathogenesis (Nassif et al.1994; Tacket et al.1998; 
Humphries et al.2009). In N. meningitidis, the binding of T4P to CD147 facilitates recruitment of 
beta-adrenergic receptors and leads to passage through the blood–brain barrier, a step absolutely 
critical to pathogenesis (Nassif et al.1994; Bernard et al.2014). 

In addition to their role in colonization, T4P are also critical for development of biofilms in 
multiple organisms. In Pseudomonas aeruginosa, T4P-mediated motility is critical for early 
biofilm development (Klausen et al.2003a), particularly in the attachment phase; T4P are also 
important in developing the architecture of the mature biofilm (Klausen et al.2003b). In an H. 

influenzae strain, mutation of the major pilin results in thinner and less-stable biofilm as 
compared to the wild-type strain (Novotny et al.2015). Recent studies also demonstrate the 
importance of T4P in Gram-positive biofilms. T4P genes are upregulated in C. perfringens 
biofilms grown at 37°C, and are required for biofilm formation (Obana, Nakamura and Nomura 
2014). Recent work demonstrates cyclic-di-GMP regulation of C. difficile T4P gene expression 
and bacterial aggregation; Bordeleau et al. hypothesize that aggregation regulation is important 
in the development of C. difficile biofilms (Bordeleau et al.2015; Purcell et al.2016). Biofilm 
formation in C. difficile has been observed in vitro (Ðapa et al.2013), and putative bacterial 
aggregates implying biofilm formation have been observed in vivo (Buckley et al.2011). 
Additionally, examination of the structure of PilA1, the major pilin subunit in C. difficile, shows 
a strong resemblance to the subunits of T4P known to mediate bacterial self-association, a 
prerequisite for formation of biofilms that depend on these structures (Piepenbrink et al.2015). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib30
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib36
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib43
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib52
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib52
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib41
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib32
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib56
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib35
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib47
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib19
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib35
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib23
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib24
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib36
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib37
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib42
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib13
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib41


Here, we investigate C. difficile biofilm gene expression and the impact of T4P deficiency, 
through knockout and complementation of the gene for the major C. difficile pilin, pilA1, on 
biofilm formation. 

 

MATERIALS AND METHODS 

Bacterial strains and growth conditions 

The Clostridium difficile R20291 strain, isolated from a 2006 outbreak in the United Kingdom, 
was chosen for these experiments as its genetic sequence is known and mutants are available. 
Production of the R20291 pilA1::ermB and R20291 pilA1::ermB ppilA1 C. difficile strains was 
previously described (Piepenbrink et al.2015). Clostridium difficile was grown at 37°C within an 
anaerobic chamber (Coy Laboratory Products, Grass Lake, Michigan, US) with 10% H2, 5% 
CO2 and 85% N2, unless otherwise stated. 

RNA sample growth 

For planktonic samples, overnight culture in brain heart infusion (BHI) media (Sigma-Aldrich, 
Saint Louis, Missouri, US) supplemented with 0.5% yeast extract and 0.1% L-cysteine brain 
heart infusion-supplemented (BHIS) was mixed 1:10 with fresh BHIS and grown with shaking 
for 6 h before mixing 1:1 with RNAProtect (Qiagen, Hilden, Germany). Biofilm samples were 
grown for 1 week in glass jars containing 8 mm glass beads. The glass beads were added in order 
to increase surface area and maximize RNA yields. BHIS medium was changed daily and 6 h 
prior to cell harvest. To harvest adherent cells (biofilm), media was removed and the beads 
rinsed with fresh media before covering with RNAProtect and subjecting to vigorous shaking for 
2 min. For plate growth samples, overnight culture was streaked onto Columbia blood agar plates 
(BD Biosciences, San Jose, California, US) and kept in the anaerobic chamber for 24 h prior to a 
3-day room temperature growth in an anaerobic GasPak container (BD Biosciences). Plates were 
returned to the anaerobic chamber for cell harvesting and placement into RNAprotect. All 
samples were stored at −80°C until used for RNA sequencing. 

Preparation of biofilm for imaging 

Glass coverslips were placed in six-well (Costar, Corning, New York, US) tissue culture plates, 
and were inoculated with turbid overnight culture diluted to OD600 = 0.125 in pre-reduced BHI 
broth to a final volume of 4 mL, supplemented with thiamphenicol as needed for plasmid 
maintenance. Media was changed every other day. At day 1 or day 7, coverslips were washed 
with sterile PBS and stained with BacLight Live/Dead stain (Life Technologies, Carlsbad, 
California, US) according to manufacturer's instructions. Slides were fixed by incubation with 
4% paraformaldehyde in PBS, mounted on glass slides, and stored in the dark at −20°C until 
imaged. Three slides per strain were grown for each strain per time point; two growths were 
conducted. 

https://www.ncbi.nlm.nih.gov/nuccore/R20291
https://www.ncbi.nlm.nih.gov/nuccore/R20291
https://www.ncbi.nlm.nih.gov/nuccore/R20291
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib41


RNA sequencing 

After thawing, cells were pelleted and RNAprotect removed. Cells were resuspended in 100 uL 
TES buffer with 35 000 units of Ready-Lyse lysozyme solution (Epicentre, Madison, Wisconsin, 
US) and incubated with shaking at room temperature for 90 min. The RNeasy RNA purification 
kit (Qiagen) was then used as per the manufacturer's instructions. Total RNA samples were 
treated with DNase I (Invitrogen, Carlsbad, California, US). The level of ribosomal RNA present 
in total RNA samples was reduced prior to library construction using the Ribo-Zero Gram-
Positive Bacteria rRNA Removal Kit (Epicentre). Illumina RNAseq libraries were prepared with 
the TruSeq RNA Sample Prep kit (Illumina, San Diego, California, US), omitting the poly-A 
selection steps. Adapters containing six nucleotide indices were ligated to the double-stranded 
cDNA. The DNA was purified between enzymatic reactions, and the size selection of the library 
was performed with AMPure XT beads (Beckman Coulter Genomics, Danvers, Massachusetts, 
US). The libraries were sequenced on a 101 bp paired end run on the HiSeq 2000 (Illumina). 
Reads were processed for quality in Trimmomatic version 0.30 (Bolger, Lohse and Usadel 2014) 
using a leading and trailing minimum score of 10 and a four-base sliding window minimum 
score of 15; on average for all libraries 99.9% of reads survived. Bowtie2 version 2.1.0 
(Langmead and Salzberg 2012) was used to map an average of 23.6 million paired reads to the 
C. difficile genome (NC_013316.1, NCBI) with an overall alignment rate of 96.2%. Samtools 
version 0.1.18 (Li et al.2009) was used for file conversion to the binary BAM format. Transcript 
abundances were evaluated in Cufflinks version 2.1.1 (Li et al.2009) using a ribosomal masking 
file for all 5S, 16S and 23S loci (NC_013316.gff annotation, NCBI), and fragments per kilobase 
per million were reported (http://cufflinks.cbcb.umd.edu) (Trapnell et al.2010). For comparative 
analysis of biofilm, plate and planktonic conditions, the Cuffdiff package in Cufflinks was used, 
and significant genes were reported. A cutoff false discovery rate-adjusted p-value (or q-value) 
of less than 0.05 was used to select significant differentially expressed genes. Heatmaps were 
generated using the gplots version 2.17.0 package (Warnes et al.2015) in R (Team RC 2014). 
Mapped RNA-Seq reads were visualized using the Integrative Genomics Viewer (Robinson 
et al.2011; Thorvaldsdóttir, Robinson and Mesirov et al.2013). 

RNA-sequencing data accession number 

The data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus 
(Edgar, Domrachev and Lash 2002) and are accessible through GEO Series accession number 
GSE69001 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE69001). 

Confocal scanning laser microscopy (CLSM) 

Biofilms were grown on 18×18 mm glass coverslips and prepared as above. Slides were read 
using a Zeiss 510 Meta confocal laser scanning microscope and accompanying software (Carl 
Zeiss AG, Oberkochen, Germany). Ten fields of view were imaged per slide. Live cells per field 
of view were enumerated with CellProfiler (Kamentsky et al.2011). Z-stacks were acquired for a 
subset of these images; at least six z-stacks were analyzed per strain per time point. The 
structural organization of the biofilms was analyzed using the Comstat2 software package 
(http://www.comstat.dk) (Heydorn and Nielsen 2000; Vorregaard 2008). The 3D representations 
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of the biofilms were generated using the 3D viewer plugin for ImageJ 
(http://3dviewer.neurofly.de) (Schmid et al.2010). 

Scanning electron microscopy (SEM) 

Biofilms were grown on glass coverslips as described above and fixed in 100% ethanol. The 
samples were shipped to the Image and Chemical Analysis Laboratory, Department of Physics, 
Montana State University, where they were allowed to air dry and then taped to an SEM mount 
using double-sided conductive carbon tape. The samples were coated with iridium and then 
imaged with a Zeiss Supra 55VP Field Emission Scanning Electron Microscope using a 1 keV 
electron beam. 

 

RESULTS 

RNA sequencing reveals a unique Clostridium difficile transcriptome during 

biofilm growth 

We performed RNA-Seq on C. difficile grown on plates under conditions favoring expression of 
PilA1 pili, on planktonic bacteria from BHIS broth culture, and on bacteria grown for 1 week in 
BHIS as a biofilm on glass beads. Of the 3652 C. difficile R20291 genes, 1604 were significantly 
differentially expressed in biofilm samples when compared to planktonic samples, and 2105 
were significantly differentially expressed in biofilm samples when compared to plate-growth 
samples. We evaluated specific genes suspected to be growth phenotype related (Table 1). Not 
surprisingly, the flagellin gene fliC was significantly decreased in biofilm samples relative to 
planktonic samples, while there was no significant difference between biofilm and plate samples. 
Suspecting adhesins important in biofilm formation, we interrogated the adhesin genes cwp66 
(Waligora et al.2001; Janoir et al.2007) and CD0802, the equivalent of CD0873 in strain 630 
(Kovacs-Simon et al.2014). Unexpectedly, we found decreased expression of both in biofilm 
samples when compared to planktonic samples, although only CD0802 was significantly 
different. When comparing biofilm- and plate-growth samples, we found significantly decreased 
expression of cwp66 and significantly increased expression of CD0802 in biofilm samples. 
Another adhesin, cbpA, encoding a collagen-binding adhesin, was recently identified in strain 
630 (Tulli et al.2013), but the gene is not present in strain R20291. cwp84 encodes a cysteine 
protease that cleaves the highly expressed precursor surface layer protein SlpA into high-
molecular-weight (HMW) and low-MW constituents; of the two, the HMW protein is more 
important for binding to human gastrointestinal tissues (Calabi et al.2002). Interestingly, we find 
no differences in cwp84 expression between all three growth conditions. This may reflect that 
our RNA-Seq biofilm samples were obtained after 1 week of growth, as a prior report documents 
that a cwp84 mutant has a more dramatic decrease in biofilm formation on day 1 compared to 
days 3 and 5 (Ðapa et al.2013). 

  

http://3dviewer.neurofly.de/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib45
https://www.ncbi.nlm.nih.gov/nuccore/R20291
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/table/tbl1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib54
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib20
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib25
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib51
https://www.ncbi.nlm.nih.gov/nuccore/R20291
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib13


Table 1. 

Differential expression of specific C. difficile genes during biofilm growth (pairwise 
comparison). 

Gene Description 

Biofilm/plate differential 

expression log2(fold 

change) 

Biofilm/planktonic differential 

expression log2(fold change) 

pilA1  Major pilin −0.90 0.87* 
pilA2  Predicted pilin −3.12* −0.41 
pilA3  Predicted pilin −2.17 0.37 
pilJ  Minor pilin 0.43 0.07 
pilK  Pilin-like protein 1.02* 1.18* 
pilU  Pilin-like protein 1.04* 1.08* 
pilV  Pilin-like protein 1.60* 0.96* 
pilW  Pilin-like protein −0.27 −0.60* 
pilX  Pilin-like protein −2.21 −0.26 
fliC  Flagellin −0.25 −1.35* 

cwp66  Adhesin (cell-wall 
protein) −1.73* −0.18 

cwp84  
Cysteine protease 
important for surface layer 
maturation 

0.37 −0.31 

CD0802  Adhesin (lipoprotein) 4.87* −0.87* 
luxS  Quorum-sensing regulator 1.99 0.12 

Spo0A  
Transcription factor 
controlling spore 
formation 

−1.35 −0.23 

tcdA  Toxin A −1.70* 0.02 
tcdB  Toxin B −1.53* 0.59* 
sigB  Housekeeping gene −0.26 −0.34 

*Statistically significant (q-value < 0.05). 

Cell-to-cell communication via a quorum-sensing system is vital for biofilm formation in 
multiple organisms (Davies et al.1998; Yang et al.2014; Omer Bendori et al.2015). Clostridium 

difficile encodes the quorum-sensing regulator luxS, which is shown to regulate the expression of 
the genes encoding C. difficile toxin A and toxin B (Carter et al.2005; Lee and Song, 2005). 
Mutation of C. difficile luxS results in a dramatic deficiency in biofilm formation, with inability 
to form even a bacterial monolayer on glass surfaces (Ðapa et al.2013). We observed no 
significant differences in expression of luxS between the three growth phenotypes examined. We 
did, however, find differential expression of toxin genes, suggesting that factors other than 
quorum sensing via the luxS regulator are important in regulation of toxin gene expression. The 
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toxin B gene (tcdB), but not the toxin A gene (tcdA), was significantly increased in biofilm 
samples when compared to planktonic samples, while both tcdA and tcdB were significantly 
decreased in biofilm samples in comparison to plate-growth samples. 

RNA sequencing shows differences in pilin gene expression 

We previously demonstrated that there are far more sequence reads from pilA1 than any other 
pilin gene when C. difficile is grown on blood agar under conditions that enhance the expression 
of pili (Fig. 1C and D), and that pilA1 encodes the major pilin (Piepenbrink et al.2015). Here, we 
also show that pilA1 is the most highly expressed pilin gene during biofilm and planktonic 
growth (Fig. 1A, B and D), further supporting the designation of pilA1as the major pilin gene. 
We also find pilJ is the second most highly expressed pilin gene in all growth conditions. This is 
consistent with our prior work demonstrating PilJ incorporation into pili, indicating that PilJ is a 
minor pilin (Piepenbrink et al.2014). When growth conditions are compared, significant 
expression differences are seen for multiple pilin genes (Fig. 1E). Expression of pilA1 is 
significantly greater on plates than under planktonic conditions in broth (q < 0.05), as was 
expected from prior experience examining pili by electron microscopy (Piepenbrink et al.2015). 
Relative expression of pilA1 is also significantly greater when grown in BHIS as a biofilm on 
glass beads than when grown as planktonic cells. This finding is consistent with recent work 
using quantitative reverse transcriptase PCR that found a significant increase in pilA1 expression 
in 48 h R20291 biofilms grown on plastic and compared to planktonic growth (Purcell 
et al.2016). Although they reside in the same gene cluster as pilA1, our data indicate that 
expression of the pilin-like protein genes pilK, pilU and pilV may have different regulation. All 
three of these RNAs are expressed at significantly higher levels in biofilm conditions when 
compared to plate or planktonic growth, while pilA1 is expressed at higher levels in biofilm 
relative to planktonic growth, but not relative to plate growth (Fig. 1E). Furthermore, while pilA1 
is expressed at a significantly higher level in plate growth in comparison to planktonic growth, 
this is not the case for pilK, pilU and pilV (Fig. 1E). Recent data demonstrate a predicted 
transcription terminator 36 bp downstream from the pilA1 stop codon (Bordeleau et al.2015), 
consistent with our finding of greater pilA1 expression relative to pil K, pil U and pilV 

expression. Close inspection of the RNA-Seq data does not reveal evidence of a separate 
promoter or transcriptional terminator in this gene cluster. In contrast to the pilins from the 
largest gene cluster, pilJ, which is unlinked to the pilA1 gene cluster, is expressed at equivalent 
levels under all three conditions. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/figure/fig1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib41
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/figure/fig1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib40
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/figure/fig1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib41
https://www.ncbi.nlm.nih.gov/nuccore/R20291
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib42
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/figure/fig1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/figure/fig1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/#bib5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985507/figure/fig1/


 
 
Figure 1.  Pilin gene expression as determined by RNA sequencing of C. difficile samples grown 
on blood agar under conditions that express pili (A) as planktonic culture (B), and as a biofilm on 
glass beads (C). Using a three-way comparison, pilin gene expression is shown as a heatmap (D), 
and differential expression between the three growth conditions is shown using pairwise 
comparisons (E). *q value < 0.05. Please note that data included in panel A were previously 
published (Piepenbrink et al.2015). 
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A non-piliated mutant is deficient in initial biofilm formation 

We previously demonstrated that PilA1 is the major C. difficile pilin, that the pilA1 mutant 
produces no visible pili in conditions known to induce piliation in the wild-type strain and that 
piliation is restored with addition of a complementation plasmid (Piepenbrink et al.2015). To 
investigate the role of T4P in biofilm formation, we grew wild-type C. difficile, the T4P-deficient 
mutant and the complemented mutant under biofilm-producing conditions. 

If T4P are important in biofilm formation, we would expect a non-piliated C. difficile mutant to 
be delayed in biofilm formation as indicated by decreased biomass and decreased live cell count 
in early biofilms as compared to wild-type bacteria; indeed, we observe this to be the case. 
Analysis of the 3D biofilm structure demonstrates that biofilms formed by the pilA1 mutant 
accumulate significantly less biomass at day 1 than the wild-type strain or the complemented 
mutant (Fig. 2A); correspondingly, the wild-type and the complemented pilA1 mutant form 
significantly thicker biofilms than the pilA1 mutant at day 1 (Fig. 2B). Quantification of CLSM 
images demonstrates that after 1 day of growth pilA1 mutant biofilm appears to have fewer live 
cells present per field of view than the parent wild-type strain (Figs (Figs2C2C and 3A–C), 
although this finding is not statistically significant. The 3D reconstructions of biofilms illustrate 
the thicker biofilms formed by the wild-type and complemented mutant as compared to the pilA1 
mutant (Fig. 3G–J) Complementation of pilA1 restores the count of live cells per field of view to 
levels slightly higher than seen in the wild-type strain. 
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Figure 2.  Assessment of lack of piliation on C. difficile biofilm formation. Biofilm biomass (A), 
thickness (B), live cell count (C) and surface-area-to-volume ratio (D) were calculated for wild-
type C. difficile (black bars), the pilA1 mutant strain (white bars) and the complemented mutant 
(gray bars) at 1 and 7 days of growth. After 1 day of growth, the pilA1 mutant forms biofilms of 
significantly reduced biomass and thickness that contain fewer live cells as compared to the 
parent wild-type strain; the complemented mutant resembles the wild-type strain. These 
differences are still apparent after 7 days of growth, though these differences are no longer 
significant. The pilA1 mutant strain also has a significantly elevated surface-to-volume ratio as 
compared to the wild type at 1 and 7 days of growth. * indicates P < 0.01, ** indicates p < 0.001. 
Groups were compared using a one-way ANOVA with Dunnett's post-test. Error bars indicate 
SEM. 
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Figure 3.  Visualization of C. difficile biofilms by CLSM. Representative images from each 
strain at both time points demonstrate the reduced biomass and thickness of the pilA1 mutant 
biofilms as compared to the wild-type strain. Complementation of the mutation restores the wild-
type phenotype. The 3D reconstructions of the imaged biofilms further illustrate these 
observations. Images demonstrate 1 day (A-C, G-J) and 7 days (D–F, K-M) of growth for wild 
type (A, D, G and K), the pilA1 mutant (B, E, H and L) and the complemented mutant (C, F, J 

and M). Live cells are stained green, dead cells are stained red. The scale bar for images A–F 
indicates 10 μm. 
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The pilA1 mutant strain's biofilm formation deficiency is not simply due to differences in growth 
rates between the wild-type and mutant strains. In broth culture, the pilA1 mutant demonstrates 
similar growth as compared to the parent wild-type strain, indicating that the absence of T4P is 
the principal reason for the deficit in biofilm formation in the pilA1 mutant strain. While the non-
piliated pilA1 mutant shows fewer live cells per field of view than the parent wild-type strain 
after 24 h of growth, this difference disappears by day 7 (Fig. 2C and H–J). As above, the 3D 
biofilm reconstructions demonstrate this phenotype (Fig. 3K–M). This phenotype, that of an 
early deficiency in biofilm formation, is consistent with previous observations of T4P-associated 
biofilms in C. perfringens and non-typeable Haemophilus influenzae (NTHI) (Carruthers 
et al.2012; Novotny et al.2015). 

Along with total biomass and biofilm thickness, the measured surface-area-to-volume ratio 
provides a useful descriptor of a strain's tendency to form clumps or aggregates of bacteria; a 
lower surface-area-to-volume ratio indicates fewer isolated bacteria and more aggregates. Given 
that T4P are required for aggregation or microcolony formation by other bacteria, we would 
anticipate an increased surface-area-to-volume ratio in the pilA1 mutant relative to the wild-type 
strain. Indeed, we find that the pilA1 mutant has an increased ratio relative to the wild-type 
strain, and complementation restores this ratio to wild-type levels (Fig. 2D). Importantly, these 
results clearly indicate a role for T4P in promoting bacterial aggregation rather than simply 
increasing adherence to an abiotic surface. However, CLSM images show aggregates of bacteria 
in all strains at both time points (Fig. 3A–G), although surface-area-to-volume ratios demonstrate 
that the wild-type strain has a greater propensity toward aggregate formation than the pilA1 
mutant (Fig. 3K–M). Similarly, SEM data show that both wild-type and pilA1 mutants are 
capable of forming aggregates with an extracellular matrix (Fig. 4). 

 

 
 
Figure 4.  Formation of biofilm by C. difficile. SEM imaging demonstrates formation of cell 
aggregates linked by matrix by both wild-type (A) and pilA1 mutant (B) strains of C. difficile 
after 7 days of growth. Scale bar indicates 2 μm. 
 

Given the presence of these aggregates in the pilA1 mutant, these aggregates can form in the 
absence of T4P composed of PilA1. Thus, other adhesive proteins, for example CbpA or SlpA 
(Merrigan et al.2013; Tulli et al.2013), may be involved in cell–cell adhesion alongside T4P; 
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alternately, T4P composed of PilA2 or PilA3 may be involved in aggregate formation. As shown 
above, pilA2 and pilA3 are expressed at low levels in the C. difficile biofilm; however, no pili 
were observed on the pilA1 mutant, suggesting their role, if any, is a small one. 

In sum, T4P genes are differentially expressed during biofilm growth and critical for early 
biofilm formation in C. difficile: a non-piliated strain is deficient in initial biofilm formation, 
forms a biofilm of reduced thickness and biomass and has decreased tendency to aggregate in 
comparison to the parent wild-type strain. Complementation of the mutant restores the above 
measures to wild-type levels. 

 

DISCUSSION 

Despite the human and medical costs of CDI, its mechanisms of colon colonization are poorly 
understood. Previous research demonstrates that C. difficile forms biofilms and expresses T4P 
(Ðapa et al.2013; Maldarelli et al.2014; Bordeleau et al.2015; Purcell et al.2016). In this work, 
we sought to elucidate the role of T4P in C. difficile biofilm formation. We demonstrate major 
differences in gene expression when C. difficile is grown as a biofilm as compared to planktonic 
or plate growth, including differences in pilin gene expression. We also demonstrate the role of 
T4P in biofilm generation: a non-piliated mutant is slower to form biofilm and less likely to form 
aggregates than the parent wild-type strain. Together, our results demonstrate that biofilm is a 
distinct mode of C. difficile growth, one in which T4P play an important role. Furthermore, these 
data reinforce earlier work (Ðapa et al.2013) that emphasizes the importance of studying 
biofilms in this clinically relevant organism. 

Our RNA-Seq studies provide valuable information regarding gene expression in C. difficile 
biofilms. We find that about half of all genes in our biofilm-growth samples are significantly 
differentially expressed when compared to either planktonic- or plate-growth samples. When 
comparing biofilm and planktonic gene expression, we expected to see increased expression of 
adhesin genes in the biofilm samples; however, we saw significantly lower expression of 
CD0802 and insignificantly lower expression of cwp66. These data lead us to hypothesize that 
these adhesins are not expressed at high levels once a biofilm is established, and this finding may 
reflect that samples were grown for 1 week before RNA extraction. Alternatively, as the ligands 
for these adhesins are unknown, and may be present on host tissue but not the surface of C. 

difficile, increased expression of these adhesins may rely on the presence of the host. Although 
others have shown a role for the quorum-sensing regulator luxS, the sporulation transcription 
factor spo0A and cysteine protease cwp84 in biofilm formation (Ðapa et al.2013), we found no 
significant differences in expression of any of these genes in our samples. One limitation of our 
study is that we only have expression data for 1-week biofilm samples, and it is quite possible 
that differences occur at earlier time points. 

Using quantitative biofilm formation assays, we show that a non-piliated mutant is deficient in 
early biofilm formation, which supports our hypothesis. The trend toward a decreased day 1 live-
cell count in the non-piliated strain suggests that T4P are important in surface attachment, the 
first step of biofilm formation. While pili primarily composed of PilA2 and PilA3 may be 
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expressed under other conditions, the genes encoding those proteins may be remnants of other 
complete T4P gene clusters, and may no longer be expressed. Our RNA-Seq data suggest that 
pilA2 and pilA3 are poorly expressed under the conditions tested here, and no pili were observed 
in the pilA1 mutant, indicating that, under the conditions used here, PilA2 and PilA3 pili are 
unlikely to contribute to biofilm formation. Deficiency in biofilm formation upon loss of 
piliation is common to other T4P-expressing, biofilm-forming organisms, including NTHI and 
Pseudomonas aeruginosa. NTHI strains lacking expression of the major pilin pilA form biofilms 
of reduced thickness and reduced biomass after 24 h of growth (Carruthers et al.2012), results 
consistent with our findings in C. difficile. Similarly, experiments with cocultures of wild-type 
and non-piliated mutant P. aeruginosa strains demonstrate that non-piliated bacteria are less able 
to move between microcolonies, and consequently form less regular biofilms (Klausen 
et al.2003a). The two T4P systems of the aquatic pathogen Vibrio parahaemolyticus have 
discrete roles in biofilm formation; the mannose-sensitive hemagglutinin pilus is involved in 
bacterial adhesion to surfaces, whereas the chitin-regulated pilus plays a role in cell–cell 
adhesion (Shime-Hattori et al.2006). T4P in C. difficile may serve similar purposes, allowing 
bacteria in the nascent biofilm to adhere to each other, as well as to surfaces. Clostridium difficile 
encodes three putative major pilins, pilA1, pilA2 and pilA3 (Merrigan et al.2013). We 
demonstrate here that pili composed of PilA1 are involved in early biofilm formation, although 
this result does not exclude the possibility that pili composed primarily of PilA2 or PilA3 also 
contribute to biofilm formation and maintenance. As in V. parahaemolyticus, multiple types of 
pili may be involved in aggregation and biofilm formation; other mechanisms unrelated to pili 
are most likely involved as well. 

Our observations regarding increased surface-area-to-volume ratio in the pilA1 mutant relative to 
the wild-type strain support the hypothesis that T4P aid the bacteria in forming aggregates or 
microcolonies, as a lower relative surface-to-volume ratio is indicative of more cell aggregates. 
Microcolonies are a critical part of P. aeruginosa biofilm initiation, and in Neisseria 

meningitidis, T4P-reliant microcolony formation is critical for bacterial passage across the 
blood–brain barrier. Our results provide a potential explanation for C. difficile cell aggregates, 
that is linkage by hair-like structures, which have been seen by SEM in the ceca and colons of C. 

difficile-infected hamsters 24 and 36 h post-infection (Buckley et al.2011). Taken together, our 
findings and the images acquired by Buckley and colleagues suggest a possible mechanism of 
colonic C. difficile colonization: T4P facilitate initial attachment to the colonic epithelium and 
microcolony formation, which in turn leads to progression of disease. The involvement of T4P in 
initial C. difficile biofilm formation is dependent upon c-di-GMP levels, as was recently 
demonstrated by Purcell et al. (2016). 

The ability to form biofilms may provide C. difficile a selective advantage. If T4P facilitate C. 

difficile adherence (both bacterium to bacterium and bacterium to epithelium), T4P-mediated 
adhesion could allow the bacteria to persist in the colon. Although spore formation may be the 
predominant mechanism underlying recurrent CDI, the presence of sessile communities in the 
colon may help to explain why symptoms of CDI can persist in some individuals despite 
recommended therapy and why infection recurs with high frequency. Bacteria in the biofilm 
mode of growth are more resistant to antimicrobials than bacteria grown on plates or in broth 
(Folsom et al.2010). This phenomenon has been demonstrated in vitro in C. difficile; bacteria 
grown as a biofilm were demonstrably more resistant to killing by super-MIC concentrations of 
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vancomycin when compared to equivalent planktonic cultures (Ðapa et al.2013). This advantage 
at super-MIC levels of vancomycin may indicate one mechanism by which C. difficile evades 
eradication during oral vancomycin treatment. 

In conclusion, we demonstrate that the RNA expression profile of C. difficile in biofilm is 
distinct from that of C. difficile grown in broth or on agar plates, including significant differences 
in pilin, adhesin and toxin gene expression. We find that bacteria unable to produce T4P form 
thinner biofilms with decreased biomass and a trend toward fewer live cells than biofilms formed 
by T4P-producing, wild-type bacteria. This work leads us to a more general understanding of 
biofilm development and the role of T4P in that development. 
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