84 research outputs found

    Lack of Detectable HIV-1 Molecular Evolution during Suppressive Antiretroviral Therapy

    Get PDF
    A better understanding of changes in HIV-1 population genetics with combination antiretroviral therapy (cART) is critical for designing eradication strategies. We therefore analyzed HIV-1 genetic variation and divergence in patients' plasma before cART, during suppression on cART, and after viral rebound. Single-genome sequences of plasma HIV-1 RNA were obtained from HIV-1 infected patients prior to cART (N = 14), during suppression on cART (N = 14) and/or after viral rebound following interruption of cART (N = 5). Intra-patient population diversity was measured by average pairwise difference (APD). Population structure was assessed by phylogenetic analyses and a test for panmixia. Measurements of intra-population diversity revealed no significant loss of overall genetic variation in patients treated for up to 15 years with cART. A test for panmixia, however, showed significant changes in population structure in 2/10 patients after short-term cART (<1 year) and in 7/10 patients after long-term cART (1-15 years). The changes consisted of diverse sets of viral variants prior to cART shifting to populations containing one or more genetically uniform subpopulations during cART. Despite these significant changes in population structure, rebound virus after long-term cART had little divergence from pretherapy virus, implicating long-lived cells infected before cART as the source for rebound virus. The appearance of genetically uniform virus populations and the lack of divergence after prolonged cART and cART interruption provide strong evidence that HIV-1 persists in long-lived cells infected before cART was initiated, that some of these infected cells may be capable of proliferation, and that on-going cycles of viral replication are not evident

    ART Suppresses Plasma HIV-1 RNA to a Stable Set Point Predicted by Pretherapy Viremia

    Get PDF
    Current antiretroviral therapy is effective in suppressing but not eliminating HIV-1 infection. Understanding the source of viral persistence is essential for developing strategies to eradicate HIV-1 infection. We therefore investigated the level of plasma HIV-1 RNA in patients with viremia suppressed to less than 50–75 copies/ml on standard protease inhibitor- or non-nucleoside reverse transcriptase inhibitor-containing antiretroviral therapy using a new, real-time PCR-based assay for HIV-1 RNA with a limit of detection of one copy of HIV-1 RNA. Single copy assay results revealed that >80% of patients on initial antiretroviral therapy for 60 wk had persistent viremia of one copy/ml or more with an overall median of 3.1 copies/ml. The level of viremia correlated with pretherapy plasma HIV-1 RNA but not with the specific treatment regimen. Longitudinal studies revealed no significant decline in the level of viremia between 60 and 110 wk of suppressive antiretroviral therapy. These data suggest that the persistent viremia on current antiretroviral therapy is derived, at least in part, from long-lived cells that are infected prior to initiation of therapy

    A 28-Year History of HIV-1 Drug Resistance and Transmission in Washington, DC

    Get PDF
    Washington, DC consistently has one of the highest annual rates of new HIV-1 diagnoses in the United States over the last 10 years. To guide intervention and prevention strategies to combat DC HIV infection, it is helpful to understand HIV transmission dynamics in a historical context. Toward this aim, we conducted a retrospective study (years 1987–2015) of 3,349 HIV pol sequences (1,026 bp) from 1,995 individuals living in the DC area belonging to three different cohorts. We coupled HIV sequence data with clinical information (sex, risk factor, race/ethnicity, viral load, subtype, anti-retroviral regimen) to identify circulating drug resistant mutations (DRM) and transmission clusters and assess their persistence over time. Of the transmission clusters identified in the DC area, 78.0 and 31.7% involved MSM and heterosexuals, respectively. The longest spread of time for a single cluster was 5 years (2007–2012) using a distance-based network inference approach and 27 years (1987–2014) using a maximum likelihood phylogenetic approach. We found eight subtypes and nine recombinants. Genetic diversity increased steadily over time with a slight peak in 2009 and remained constant thereafter until 2015. Nucleotide diversity also increased over time while relative genetic diversity (BEAST) remained relatively steady over the last 28 years with slight increases since 2000 in subtypes B and C. Sequences from individuals on drug therapy contained the highest total number of DRMs (1,104–1,600) and unique DRMs (63–97) and the highest proportion (&gt;20%) of resistant individuals. Heterosexuals (43.94%), MSM (40.13%), and unknown (44.26%) risk factors showed similar prevalence of DRMs, while injection drug users had a lower prevalence (33.33%). Finally, there was a 60% spike in the number of codons with DRMs between 2007 and 2010. Past patterns of HIV transmission and DRM accumulation over time described here will help to predict future efficacy of ART drugs based on DRMs persisting over time and identify risk groups of interest for prevention and intervention efforts within the DC population. Our results show how longitudinal data can help to understand the temporal dynamics of HIV-1 at the local level

    Regimen Simplification to Atazanavir‐Ritonavir Alone as Maintenance Antiretroviral Therapy: Final 48‐Week Clinical and Virologic Outcomes

    Get PDF
    Simplified maintenance therapy with ritonavir-boosted atazanavir (ATV/RTV) alone is attractive because of nucleoside reverse-transcriptase inhibitor (NRTI)–sparing benefits, low pill burden, once-daily dosage, and safety

    RT-SHIV subpopulation dynamics in infected macaques during anti-HIV therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To study the dynamics of wild-type and drug-resistant HIV-1 RT variants, we developed a methodology that follows the fates of individual genomes over time within the viral quasispecies. Single genome sequences were obtained from 3 pigtail macaques infected with a recombinant simian immunodeficiency virus containing the RT coding region from HIV-1 (RT-SHIV) and treated with short-course efavirenz monotherapy 13 weeks post-infection followed by daily combination antiretroviral therapy (ART) beginning at week 17. Bioinformatics tools were constructed to trace individual genomes from the beginning of infection to the end of the treatment.</p> <p>Results</p> <p>A well characterized challenge RT-SHIV inoculum was used to infect three monkeys. The RT-SHIV inoculum had 9 variant subpopulations and the dominant subpopulation accounted for 80% of the total genomes. In two of the three monkeys, the inoculated wild-type virus was rapidly replaced by new wild type variants. By week 13, the original dominant subpopulation in the inoculum was replaced by new dominant subpopulations, followed by emergence of variants carrying known NNRTI resistance mutations. However, during ART, virus subpopulations containing resistance mutations did not outgrow the wide-type subpopulations until a minor subpopulation carrying linked drug resistance mutations (K103N/M184I) emerged. We observed that persistent viremia during ART is primarily made up of wild type subpopulations. We also found that subpopulations carrying the V75L mutation, not known to be associated with NNRTI resistance, emerged initially in week 13 in two macaques. Eventually, all subpopulations from these two macaques carried the V75L mutation.</p> <p>Conclusion</p> <p>This study quantitatively describes virus evolution and population dynamics patterns in an animal model. The fact that wild type subpopulations remained as dominant subpopulations during ART treatment suggests that the presence or absence of at least some known drug resistant mutations may not greatly affect virus replication capacity <it>in vivo</it>. Additionally, the emergence and prevalence of V75L indicates that this mutation may provide the virus a selective advantage, perhaps escaping the host immure system surveillance. Our new method to quantitatively analyze viral population dynamics enabled us to observe the relative competitiveness and adaption of different viral variants and provided a valuable tool for studying HIV subpopulation emergence, persistence, and decline during ART.</p

    Multiple Sources of Contamination in Samples from Patients Reported to Have XMRV Infection

    Get PDF
    Xenotropic murine leukemia virus (MLV)-related retrovirus (XMRV) was reported to be associated with prostate cancer by Urisman, et al. in 2006 and chronic fatigue syndrome (CFS) by Lombardi, et al. in 2009. To investigate this association, we independently evaluated plasma samples from 4 patients with CFS reported by Lombardi, et al. to have XMRV infection and from 5 healthy controls reported to be XMRV uninfected. We also analyzed viral sequences obtained from supernatants of cell cultures found to contain XMRV after coculture with 9 clinical samples from 8 patients. A qPCR assay capable of distinguishing XMRV from endogenous MLVs showed that the viral sequences detected in the CFS patient plasma behaved like endogenous MLVs and not XMRV. Single-genome sequences (N = 89) from CFS patient plasma were indistinguishable from endogenous MLVs found in the mouse genome that are distinct from XMRV. By contrast, XMRV sequences were detected by qPCR in 2 of the 5 plasma samples from healthy controls (sequencing of the qPCR product confirmed XMRV not MLV). Single-genome sequences (N = 234) from the 9 culture supernatants reportedly positive for XMRV were indistinguishable from XMRV sequences obtained from 22Rv1 and XMRV-contaminated 293T cell-lines. These results indicate that MLV DNA detected in the plasma samples from CFS patients evaluated in this study was from contaminating mouse genomic DNA and that XMRV detected in plasma samples from healthy controls and in cultures of patient samples was due to cross-contamination with XMRV (virus or nucleic acid)

    Tetherin-Driven Adaptation of Vpu and Nef Function and the Evolution of Pandemic and Nonpandemic HIV-1 Strains

    Get PDF
    Vpu proteins of pandemic HIV-1 M strains degrade the viral receptor CD4 and antagonize human tetherin to promote viral release and replication. We find that Vpus from SIVgsn, SIVmus and SIVmon infecting Cercopithecus primate species also degrade CD4 and antagonize tetherin. In contrast, SIVcpz, the immediate precursor of HIV-1, whose Vpu shares a common ancestry with SIVgsn/mus/mon Vpu, uses Nef rather than Vpu to counteract chimpanzee tetherin. Human tetherin, however, is resistant to Nef and thus poses a significant barrier to zoonotic transmission of SIVcpz to humans. Remarkably, Vpu from non-pandemic HIV-1 O strains are poor tetherin antagonists while those from the rare group N viruses do not degrade CD4. Thus, only HIV-1 M evolved a fully functional Vpu following the three independent cross-species transmissions that resulted in HIV-1 groups M, N, and O. This may explain why group M viruses are almost entirely responsible for the gobal HIV/AIDS pandemic

    Adaptation of HIV-1 Depends on the Host-Cell Environment

    Get PDF
    Many viruses have the ability to rapidly develop resistance against antiviral drugs and escape from the host immune system. To which extent the host environment affects this adaptive potential of viruses is largely unknown. Here we show that for HIV-1, the host-cell environment is key to the adaptive potential of the virus. We performed a large-scale selection experiment with two HIV-1 strains in two different T-cell lines (MT4 and C8166). Over 110 days of culture, both virus strains adapted rapidly to the MT4 T-cell line. In contrast, when cultured on the C8166 T-cell line, the same strains did not show any increase in fitness. By sequence analyses and infections with viruses expressing either yellow or cyan fluorescent protein, we were able to show that the absence of adaptation was linked to a lower recombination rate in the C8166 T-cell line. Our findings suggest that if we can manipulate the host-cellular factors that mediate viral evolution, we may be able to significantly retard viral adaptability

    The role of integration and clonal expansion in HIV infection: live long and prosper

    No full text
    Abstract Integration of viral DNA into the host genome is a central event in the replication cycle and the pathogenesis of retroviruses, including HIV. Although most cells infected with HIV are rapidly eliminated in vivo, HIV also infects long-lived cells that persist during combination antiretroviral therapy (cART). Cells with replication competent HIV proviruses form a reservoir that persists despite cART and such reservoirs are at the center of efforts to eradicate or control infection without cART. The mechanisms of persistence of these chronically infected long-lived cells is uncertain, but recent research has demonstrated that the presence of the HIV provirus has enduring effects on infected cells. Cells with integrated proviruses may persist for many years, undergo clonal expansion, and produce replication competent HIV. Even proviruses with defective genomes can produce HIV RNA and may contribute to ongoing HIV pathogenesis. New analyses of HIV infected cells suggest that over time on cART, there is a shift in the composition of the population of HIV infected cells, with the infected cells that persist over prolonged periods having proviruses integrated in genes associated with regulation of cell growth. In several cases, strong evidence indicates the presence of the provirus in specific genes may determine persistence, proliferation, or both. These data have raised the intriguing possibility that after cART is introduced, a selection process enriches for cells with proviruses integrated in genes associated with cell growth regulation. The dynamic nature of populations of cells infected with HIV during cART is not well understood, but is likely to have a profound influence on the composition of the HIV reservoir with critical consequences for HIV eradication and control strategies. As such, integration studies will shed light on understanding viral persistence and inform eradication and control strategies. Here we review the process of HIV integration, the role that integration plays in persistence, clonal expansion of the HIV reservoir, and highlight current challenges and outstanding questions for future research

    Low-level alternative tRNA priming of reverse transcription of HIV-1 and SIV in vivo

    No full text
    Abstract Background Reverse transcription (RT) of HIV and SIV is initiated by the binding of the acceptor stem of tRNALys3 to the primer binding site (PBS) of the viral RNA genome. Previous studies have suggested that this tRNALys3 is not the only molecule capable of priming reverse transcription, and that at least one other lysyl tRNA, tRNALys5, which has an acceptor stem sequence varying from tRNALys3 by only a single transition mutation resulting in the integration of a thymine (T) at position 8 of the PBS in the viral genome, can prime reverse transcription. Results We undertook an unbiased approach, evaluating the primer binding site by deep-sequencing of HIV and SIV directly from the plasma of 15 humans and 11 macaques. We found that in humans there are low but measurable levels of viral RNA genomes harboring a PBS containing the noncanonical T at position 8 (PBS-Lys5) corresponding to the tRNAlys5 sequence and representing an average of 0.52% (range 0.07–1.6%) of the total viral population. This value is remarkably consistent with the proportion of PBS-Lys5 we identified in a cross-sectional assessment of the LANL HIV database (0.51%). In macaques chronically infected with SIVmac239, the PBS-Lys5 was also detected but at a frequency 1-log less than seen for HIV, with an average of 0.056% (range 0.01–0.09%). At this proportion, PBS-Lys5 was comparable to other transition mutations, making it impossible to determine whether the mutation observed is a result of use of tRNALys5 as an RT primer at very low levels or merely the product of in vitro cDNA synthesis/PCR error. We also identified two novel PBS sequences in HIV and SIV at low levels in vivo corresponding to tRNALys6 and tRNALys1,2, suggesting that these tRNAs may rarely also be used to prime RT. In vivo reversion of the PBS-Lys5 found in SIVmac239 was rapid and reached background levels by 30 days post-infection. Conclusions We conclude that while alternative tRNAs can initiate reverse transcription of HIV and SIV in vivo, their overall contributions to the replicating viral population are small
    corecore