10 research outputs found
3D Bioprinting in Microgravity: Opportunities, Challenges, and Possible Applications in Space
: 3D bioprinting has developed tremendously in the last couple of years and enables the fabrication of simple, as well as complex, tissue models. The international space agencies have recognized the unique opportunities of these technologies for manufacturing cell and tissue models for basic research in space, in particular for investigating the effects of microgravity and cosmic radiation on different types of human tissues. In addition, bioprinting is capable of producing clinically applicable tissue grafts, and its implementation in space therefore can support the autonomous medical treatment options for astronauts in future long term and far-distant space missions. The article discusses opportunities but also challenges of operating different types of bioprinters under space conditions, mainly in microgravity. While some process steps, most of which involving the handling of liquids, are challenging under microgravity, this environment can help overcome problems such as cell sedimentation in low viscous bioinks. Hopefully, this publication will motivate more researchers to engage in the topic, with publicly available bioprinting opportunities becoming available at the International Space Station (ISS) in the imminent future
3D Bioprinting in Microgravity: Opportunities, Challenges, and Possible Applications in Space
3D bioprinting has developed tremendously in the last couple of years and enables the fabrication of simple, as well as complex, tissue models. The international space agencies have recognized the unique opportunities of these technologies for manufacturing cell and tissue models for basic research in space, in particular for investigating the effects of microgravity and cosmic radiation on different types of human tissues. In addition, bioprinting is capable of producing clinically applicable tissue grafts, and its implementation in space therefore can support the autonomous medical treatment options for astronauts in future long term and far-distant space missions. The article discusses opportunities but also challenges of operating different types of bioprinters under space conditions, mainly in microgravity. While some process steps, most of which involving the handling of liquids, are challenging under microgravity, this environment can help overcome problems such as cell sedimentation in low viscous bioinks. Hopefully, this publication will motivate more researchers to engage in the topic, with publicly available bioprinting opportunities becoming available at the International Space Station (ISS) in the imminent future
3D Bioprinting in Microgravity: Opportunities, Challenges, and Possible Applications in Space
3D bioprinting has developed tremendously in the last couple of years and enables the fabrication of simple, as well as complex, tissue models. The international space agencies have recognized the unique opportunities of these technologies for manufacturing cell and tissue models for basic research in space, in particular for investigating the effects of microgravity and cosmic radiation on different types of human tissues. In addition, bioprinting is capable of producing clinically applicable tissue grafts, and its implementation in space therefore can support the autonomous medical treatment options for astronauts in future long term and far-distant space missions. The article discusses opportunities but also challenges of operating different types of bioprinters under space conditions, mainly in microgravity. While some process steps, most of which involving the handling of liquids, are challenging under microgravity, this environment can help overcome problems such as cell sedimentation in low viscous bioinks. Hopefully, this publication will motivate more researchers to engage in the topic, with publicly available bioprinting opportunities becoming available at the International Space Station (ISS) in the imminent future
Hyperbaric Oxygen Stimulates Epidermal Reconstruction in Human Skin Equivalents
The crucial role of oxygen during the complex process of wound healing has been extensively described. In chronic or nonhealing wounds, much evidence has been reported indicating that a lack of oxygen is a major contributing factor. Although still controversial, the therapeutic application of hyperbaric oxygen (HBO) therapy can aid the healing of chronic wounds. However, how HBO affects reepithelization, involving processes such as keratinocyte proliferation and differentiation, remains unclear. We therefore used a three-dimensional human skin-equivalent (HSE) model to investigate the effects of daily 90-minute HBO treatments on the reconstruction of an epidermis. Epidermal markers of proliferation, differentiation, and basement membrane components associated with a developing epidermis, including p63, collagen type IV, and cytokeratins 6, 10, and 14, were evaluated. Morphometric analysis of hematoxylin and eosin-stained cross sections revealed that HBO treatments significantly accelerated cornification of the stratum corneum compared with controls. Protein expression as determined by immunohistochemical analysis confirmed the accelerated epidermal maturation. In addition, early keratinocyte migration was enhanced by HBO. Thus, HBO treatments stimulate epidermal reconstruction in an HSE. These results further support the importance of oxygen during the process of wound healing and the potential role of HBO therapy in cutaneous wound healing
Effects of Hyperbaric Oxygen on Proliferation and Differentiation of Osteoblasts from Human Alveolar Bone
In view of the controversy of the clinical use of hyperbaric oxygen (HBO) treatment to stimulate fracture healing and bone regeneration, we have analysed the effects of daily exposure to HBO on the proliferation and differentiation of human osteoblasts in vitro. HBO stimulated proliferation when osteoblasts were cultured in 10% foetal calf serum (FCS), whereas an inhibitory effect of HBO was observed when cultures were supplemented with 2% FCS,. On the other hand, HBO enhanced biomineralization with an increase in bone nodule formation, calcium deposition and alkaline phosphatase activity, while no cytotoxic effect was detected using a lactate dehydrogenase activity assay. The data suggests that the exposure of osteoblasts to HBO enhances differentiation towards the osteogenic phenotype, providing cellular evidence of the potential application of HBO in fracture healing and bone regeneration
Microcarriers in the Engineering of Cartilage and Bone
A major problem in tissue engineering is the availability of a sufficient number of cells with the appropriate phenotype for delivery to damaged or diseased cartilage and bone; the challenge is to amplify cell numbers and maintain the appropriate phenotype for tissue repair and restoration of function. The microcarrier bioreactor culture system offers an attractive method for cell amplification and enhancement of phenotype expression. Besides serving as substrates for the propagation of anchorage-dependent cells, microcarriers can also be used to deliver the expanded undifferentiated or differentiated cells to the site of the defect. The present article provides an overview of the microcarrier culture system, its utility as an in vitro research tool and its potential applications in tissue engineering, particularly in the repair of cartilage and bone
The Roles of Hypoxia in the In Vitro Engineering of Tissues
Oxygen is a potent modulator of cell function and wound repair in vivo. The lack of oxygen (hypoxia) can create a potentially lethal environment and limit cellular respiration and growth or, alternatively, enhance the production of the specific extracellular matrix components and increase angiogenesis through the hypoxia-inducible factor-1 pathway. For the in vitro generation of clinically relevant tissue-engineered grafts, these divergent actions of hypoxia should be addressed. Diffusion through culture medium and tissue typically limits oxygen transport in vitro, leading to hypoxic regions and limiting the viable tissue thickness. Approaches to overcoming the transport limitations include culture with bioreactors, scaffolds with artificial microvasculature, oxygen carriers, and hyperbaric oxygen chambers. As an alternate approach, angiogenesis after implantation may be enhanced by incorporating endothelial cells, genetically modified cells, or specific factors (including vascular endothelial growth factor) into the scaffold or exposing the graft to a hypoxic environment just before implantation. Better understanding of the roles of hypoxia will help prevent common problems and exploit potential benefits of hypoxia in engineered tissues
In Vitro Models for Evaluation of Hyperbaric Oxygen Therapy in Wound Healing: A Review
Chronic ulcers are a major problem affecting a significant number of people around the world. The condition is difficult to heal and often leads to amputation. Hyperbaric oxygen (HBO) has been used clinically for the treatment of chronic ulcers and positive outcomes have been reported. However, owing to the lack of large randomised controlled trials and some conflicting data, controversy regarding the effectiveness of HBO in chronic wound healing persists. Besides randomised controlled clinical trials, in vitro studies hold promise in providing further insight into the role of HBO in wound healing and in aiding the establishment of a scientific foundation upon which more rational and efficacious HBO therapeutic regimes may be developed. The present article provides an overview of the available in vitro data on HBO with regards to wound healing. In particular, it focuses on experimental design issues and future opportunities using human skin equivalent models to study HBO-mediated wound healing
Fixation of Hydrogel Constructs for Cartilage Repair in the Equine Model : A Challenging Issue
Objective: To report on the experiences with the use of commercial and autologous fibrin glue (AFG) and of an alternative method based on a 3D-printed polycaprolactone (PCL) anchor for the fixation of hydrogel-based scaffolds in an equine model for cartilage repair. Methods: In a first study, three different hydrogel-based materials were orthotopically implanted in nine horses for 1-4 weeks in 6 mm diameter full-thickness cartilage defects in the medial femoral trochlear ridge and fixated with commercially available fibrin glue (CFG). One defect was filled with CFG only as a control. In a second study, CFG and AFG were compared in an ectopic equine model. The third study compared the efficacy of AFG and a 3D-printed PCL-based osteal anchor for fixation of PCL-reinforced hydrogels in three horses for 2 weeks, with a 4-week follow-up to evaluate integration of bone with the PCL anchor. Short-term scaffold integration and cell infiltration were evaluated by microcomputed tomography and histology as outcome parameters. Results: The first study showed signs of subchondral bone resorption in all defects, including the controls filled with CFG only, with significant infiltration of neutrophils. Ectopically, CFG induced clear inflammation with strong neutrophil accumulation; AFG was less reactive, showing fibroblast infiltration only. In the third study the fixation potential for PCL-reinforced hydrogels of AFG was inferior to the PCL anchor. PCL reinforcement had disappeared from two defects and showed signs of dislodging in the remaining four. All six constructs fixated with the PCL anchor were still in place after 2 weeks. At 4 weeks, the PCL anchor showed good integration and signs of new bone formation. Conclusions: The use of AFG should be preferred to xenogeneic products in the horse, but AFG is subject to individual variations and laborious to make. The PCL anchor provides the best fixation; however, this technique involves the whole osteochondral unit, which entails a different conceptual approach to cartilage repair