68 research outputs found

    Three-dimensional general relativistic hydrodynamics II: long-term dynamics of single relativistic stars

    Get PDF
    This is the second in a series of papers on the construction and validation of a three-dimensional code for the solution of the coupled system of the Einstein equations and of the general relativistic hydrodynamic equations, and on the application of this code to problems in general relativistic astrophysics. In particular, we report on the accuracy of our code in the long-term dynamical evolution of relativistic stars and on some new physics results obtained in the process of code testing. The tests involve single non-rotating stars in stable equilibrium, non-rotating stars undergoing radial and quadrupolar oscillations, non-rotating stars on the unstable branch of the equilibrium configurations migrating to the stable branch, non-rotating stars undergoing gravitational collapse to a black hole, and rapidly rotating stars in stable equilibrium and undergoing quasi-radial oscillations. The numerical evolutions have been carried out in full general relativity using different types of polytropic equations of state using either the rest-mass density only, or the rest-mass density and the internal energy as independent variables. New variants of the spacetime evolution and new high resolution shock capturing (HRSC) treatments based on Riemann solvers and slope limiters have been implemented and the results compared with those obtained from previous methods. Finally, we have obtained the first eigenfrequencies of rotating stars in full general relativity and rapid rotation. A long standing problem, such frequencies have not been obtained by other methods. Overall, and to the best of our knowledge, the results presented in this paper represent the most accurate long-term three-dimensional evolutions of relativistic stars available to date.Comment: 19 pages, 17 figure

    Phenological mismatch in Arctic-breeding shorebirds: Impact of snowmelt and unpredictable weather conditions on food availability and chick growth

    Get PDF
    The ecological consequences of climate change have been recognized in numerous species, with perhaps phenology being the most well-documented change. Phenological changes may have negative consequences when organisms within different trophic levels respond to environmental changes at different rates, potentially leading to phenological mismatches between predators and their prey. This may be especially apparent in the Arctic, which has been affected more by climate change than other regions, resulting in earlier, warmer, and longer summers. During a 7-year study near Utqiaġvik (formerly Barrow), Alaska, we estimated phenological mismatch in relation to food availability and chick growth in a community of Arctic-breeding shorebirds experiencing advancement of environmental conditions (i.e., snowmelt). Our results indicate that Arctic-breeding shorebirds have experienced increased phenological mismatch with earlier snowmelt conditions. However, the degree of phenological mismatch was not a good predictor of food availability, as weather conditions after snowmelt made invertebrate availability highly unpredictable. As a result, the food available to shorebird chicks that were 2–10 days old was highly variable among years (ranging from 6.2 to 28.8 mg trap−1 day−1 among years in eight species), and was often inadequate for average growth (only 20%–54% of Dunlin and Pectoral Sandpiper broods on average had adequate food across a 4-year period). Although weather conditions vary among years, shorebirds that nested earlier in relation to snowmelt generally had more food available during brood rearing, and thus, greater chick growth rates. Despite the strong selective pressure to nest early, advancement of nesting is likely limited by the amount of plasticity in the start and progression of migration. Therefore, long-term climatic changes resulting in earlier snowmelt have the potential to greatly affect shorebird populations, especially if shorebirds are unable to advance nest initiation sufficiently to keep pace with seasonal advancement of their invertebrate prey

    Glastir Monitoring & Evaluation Programme. Second year annual report

    Get PDF
    What is the purpose of Glastir Monitoring and Evaluation Programme? Glastir is the main scheme by which the Welsh Government pays for environmental goods and services whilst the Glastir Monitoring and Evaluation Programme (GMEP) evaluates the scheme’s success. Commissioning of the monitoring programme in parallel with the launch of the Glastir scheme provides fast feedback and means payments can be modified to increase effectiveness. The Glastir scheme is jointly funded by the Welsh Government (through the Rural Development Plan) and the EU. GMEP will also support a wide range of other national and international reporting requirements. What is the GMEP approach? GMEP collects evidence for the 6 intended outcomes from the Glastir scheme which are focussed on climate change, water and soil quality, biodiversity, landscape, access and historic environment, woodland creation and management. Activities include; a national rolling monitoring programme of 1km squares; new analysis of long term data from other schemes combining with GMEP data where possible; modelling to estimate future outcomes so that adjustments can be made to maximise impact of payments; surveys to assess wider socio-economic benefits; and development of novel technologies to increase detection and efficiency of future assessments. How has GMEP progressed in this 2nd year? 90 GMEP squares were surveyed in Year 2 to add to the 60 completed in Year 1 resulting in 50% of the 300 GMEP survey squares now being completed. Squares will be revisited on a 4 year cycle providing evidence of change in response to Glastir and other pressures such as changing economics of the farm business, climate change and air pollution. This first survey cycle collects the baseline against which future changes will be assessed. This is important as GMEP work this year has demonstrated land coming into the scheme is different in some respects to land outside the scheme. Therefore, future analysis to detect impact of Glastir will be made both against the national backdrop from land outside the scheme and this baseline data from land in scheme. A wide range of analyses of longterm data has been completed for all Glastir Outcomes with the exception of landscape quality and historic features condition for which limited data is available. This has involved combining data with 2013/14 GMEP data when methods allow. Overall analysis of long term data indicates one of stability but with little evidence of improvement with the exception of headwater quality, greenhouse gas emissions and woodland area for which there has been improvement over the last 20 years. Some headline statistics include: 51% of historic features in excellent or sound condition; two thirds of public rights of way fully open and accessible; improvement in hedgerow management with 85% surveyed cut in the last 3 years but < 1% recently planted; 91% of streams had some level of modification but 60% retained good ecological quality; no change topsoil carbon content over last 25 years. What is innovative? GMEP has developed various new metrics to allow for more streamlined reporting in the future. For example a new Priority Bird species Index for Wales which combines data from 35 species indicates at least half have stable or increasing populations. The new GMEP Visual Quality Landscape Index has been tested involving over 2600 respondents. Results have demonstrated its value as an objective and repeatable method for quantifying change in visual landscape quality. A new unified peat map for Wales has been developed which has been passed to Glastir Contract Managers to improve targeting of payments when negotiating Glastir contracts. An estimate of peat soil contribution to current greenhouse gas emissions due to human modification has been calculated. Models have allowed quantification of land area helping to mitigate rainfall runoff. We are using new molecular tools to explore the effects of Glastir on soil organisms and satellite technologies to quantify e.g. small woody features and landcover change. Finally we are using a community approach to develop a consensus on how to define and report change in High Nature Value Farmland which will be reported in the Year 3 GMEP report

    Glastir Monitoring & Evaluation Programme. Final report

    Get PDF
    Final Report to Welsh Government, prepared by CEH on behalf of the Glastir Monitoring & Evaluation Programme Team. The Glastir Monitoring and Evaluation Programme (GMEP) provides a comprehensive programme to establish a baseline against which future assessments of Glastir can be made. GMEP also contributes national trend data which supports a range of national and international biodiversity and environmental targets. GMEP fulfils a commitment by the Welsh Government to establish a monitoring programme concurrently with the launch of the Glastir scheme. The use of models and farmer surveys provides early indicators of the likely direction, magnitude and timing of future outcomes. The programme ensures compliance with the rigorous requirements of the European Commission’s Common Monitoring and Evaluation Framework (CMEF) through the Rural Development Plan (RDP) for Wales. This report represents the final results of the GMEP programme which ran from 2012 to 2016

    Deciding on the Worth of Agricultural Land

    No full text
    The price farmers pay for farm land can be a critical determinant of the continued success or eventual failure of a farm business. A decision support model has been developed to make explicit the usually implicit assumptions about expected profitability, financing and debt servicing aspects of land purchase decisions. The model can be used to help the decision maker to identify offer prices for farm land which are probably sound and prices which are likely to be unsound.Land Economics/Use,

    Disease management guide for commercial vegetable growers.

    Get PDF
    Vols. for 1981- prepared by Barry Jacobsen, M. C. Shurtleff, and Molly Niedbalski Cline.Replaces Circular 999

    Disease management guide for commercial vegetable growers.

    No full text
    Vols. for 1981- prepared by Barry Jacobsen, M. C. Shurtleff, and Molly Niedbalski Cline.Replaces Circular 999

    Type 2 diabetes does not exacerbate body heat storage in older adults during brief, extreme passive heat exposure

    No full text
    Aging exacerbates hyperthermia and cardiovascular strain during passive heat exposure, but it remains unclear whether those effects worsen in older adults with type 2 diabetes (T2D). We examined these responses in unacclimatized, physically active, older individuals with (n = 13, mean ± SD age: 60 ± 8 years, HbA1c: 7.0 ± 1.0%) and without (Control, n = 30, 62 ± 6 years) well-controlled T2D during a brief, 3-h passive exposure to extreme heat (44°C, 30% relative humidity). Metabolic heat production, dry heat gain, total heat gain (metabolic heat production + dry heat gain), evaporative heat loss, body heat storage (summation of heat gain/loss), rectal and mean skin temperatures as well as heart rate were measured continuously. No between-group differences were observed for metabolic heat production (T2D vs. Control; 53 ± 5 vs. 55 ± 7 W/m2), dry heat gain (48 ± 9 vs. 47 ± 11 W/m2), total heat gain (101 ± 10 vs. 102 ± 14 W/m2) and evaporative heat loss (83 ± 10 vs. 85 ± 12 W/m2) over the 3 h (all P &gt; 0.05). Consequently, the changes in body heat storage (380 ± 93 vs. 358 ± 172 kJ, P = 0.67) were similar between groups. Moreover, no between-group differences in rectal and mean skin temperatures or heart rate were measured. We conclude that unacclimatized, physically active, older adults with well-controlled T2D do not experience greater hyperthermia and cardiovascular strain compared to their healthy counterparts while resting in extreme heat for a brief, 3-h period. © 2020 Informa UK Limited, trading as Taylor & Francis Group
    • …
    corecore