39 research outputs found
LANDSAT-4/5 image data quality analysis
A LANDSAT Thematic Mapper (TM) quality evaluation study was conducted to identify geometric and radiometric sensor errors in the post-launch environment. The study began with the launch of LANDSAT-4. Several error conditions were found, including band-to-band misregistration and detector-to detector radiometric calibration errors. Similar analysis was made for the LANDSAT-5 Thematic Mapper and compared with results for LANDSAT-4. Remaining band-to-band misregistration was found to be within tolerances and detector-to-detector calibration errors were not severe. More coherent noise signals were observed in TM-5 than in TM-4, although the amplitude was generally less. The scan direction differences observed in TM-4 were still evident in TM-5. The largest effect was in Band 4 where nearly a one digital count difference was observed. Resolution estimation was carried out using roads in TM-5 for the primary focal plane bands rather than field edges as in TM-4. Estimates using roads gave better resolution. Thermal IR band calibration studies were conducted and new nonlinear calibration procedures were defined for TM-5. The overall conclusion is that there are no first order errors in TM-5 and any remaining problems are second or third order
The relationship of sensor parameters to applications data analysis
A stochastic model for the data acquisition system in a multispectral scanner system, like the one utilized by the LANDSAT satellites, is presented. A list of noise sources which are known or presumed to have a significant effect in the information extraction process was constructed. Since the shot noise introduced by the photodetectors in the sensor system is signal level dependent, an atmospheric model was adopted which could adequately describe the amount of radiation that gets into the sensors based on the atmospheric transmittance. An analysis was carried out to find the output spectral statistics in terms of the input signal statistics and the system parameters. This was integrated into a set of FORTRAN programs that when supplied with, the class statistics, the noise levels introduced by the sensor system, the atmospheric transmittance, and the atmospheric path radiance, can be used to estimate the classification performance. In order to show the beneficts of this model a series of runs were performed in which the Thematic Mapper multispectral scanner was the system under consideration
Estimation of a Remote Sensing System Point-Spread Function from Measured Imagery
Satellite-based multispectral imaging systems have been in operation since 1972 and the latest in the Landsat series of sensors was launched in July 1982. One system parameter of interest is resolution and this paper discusses experiments to determine the actual overall resolution after launch. Atmospheric effects and postprocessing effects add to the prelaunch optical resolution. Scene structures, such as roads and field edges, were used with numerical estimation procedures to predict resolution in Landsat-4 Thematic Mapper imagery. A nominal resolution of 39 meters was determined as compared to the predicted 30 m prelaunch value
The Clementine Bistatic Radar Experiment
During the Clementine 1 mission, a bistatic radar experiment measured the magnitude and polarization of the radar echo versus bistatic angle, beta, for selected lunar areas. Observations of the lunar south pole yield a same-sense polarization enhancement around beta = 0. Analysis shows that the observed enhancement is localized to the permanently shadowed regions of the lunar south pole. Radar observations of periodically solar-illuminated lunar surfaces, including the north pole, yielded no such enhancement. A probable explanation for these differences is the presence of low-loss volume scatterers, such as water ice, in the permanently shadowed region at the south pole
Controlling simonkolleite crystallisation via metallic Zn oxidation in a betaine hydrochloride solution
Zinc oxide nanoparticles, with a hexagonal flake structure, are of significant interest across a range of applications including photocatalysis and biomedicine. Simonkolleite (Zn5(OH)8Cl2路H2O), a layered double hydroxide, is a precursor for ZnO. Most simonkolleite synthesis routes require precise pH adjustment of Zn-containing salts in alkaline solution, and still produce some undesired morphologies along with the hexagonal one. Additionally, liquid-phase synthesis routes, based on conventional solvents, are environmentally burdensome. Herein aqueous ionic liquid, betaine hydrochloride (betaine路HCl), solutions are used to directly oxidise metallic Zn, producing pure simonkolleite nano/microcrystals (X-ray diffraction analysis, thermogravimetric analysis). Imaging (scanning electron microscopy) showed regular and uniform hexagonal simonkolleite flakes. Morphological control, as a function of reaction conditions (betaine路HCl concentration, reaction time, and reaction temperature), was achieved. Different growth mechanisms were observed as a function of the concentration of betaine路HCl solution, both traditional classical growth of individual crystals and non-traditional growth patterns; the latter included examples of Ostwald ripening and oriented attachment. After calcination, simonkolleite's transformation into ZnO retains its hexagonal skeleton; this produces a nano/micro-ZnO with a relatively uniform shape and size through a convenient reaction route
Lunar Reconnaissance Orbiter: Enabling CLPS Mission Success
No abstract availabl
Clay Bearing Units in the Region around Mawrth Vallis: Stratigraphy, Extent, and Possible Alteration Fronts
The largest exposure of phyllosilicates on Mars occurs on the highland plains around Mawrth Vallis. This exposure extends for about 300 km southward from the edge of the dichotomy boundary, covering an area greater than 200 x 300 kilometers over an elevation range of approximately 2000 meters. At least two different types of hydrated phyllosilicates (Fe/Mg-rich and Al-rich phyllosilicates) have been identified in OMEGA data based on absorption bands near 2.3 and 2.2 micrometers, respectively. These clay-bearing units are associated with layered, indurated light-toned units with complex spatial and stratigraphic relationships, and are unconfomably overlain by a darker, indurated, more heavily cratered unit. Ongoing analysis of OMEGA (approximately 1 kilometer/pixel) and CRISM multi-spectral (MSP, 200 meters/pixel) data reveal hydrated minerals with absorptions at approximately 2.2 or 2.3 micrometers in locations up to 300 kilometers away from the borders of the previously identified extent of clay-bearing units. We seek to: 1) further constrain the mineralogy of the hydrated species identified in [5], and 2) understand spatial and stratigraphic relationships between the different hydrated minerals and the cratered plains units in which they are found. In this work we perform mineralogical and stratigraphic comparisons between units to test whether these extended units may be related, in order to establish a broad zone of alteration
Mineralogy of the Lunar Crust in Spatial Context: First Results from the Moon Mineralogy Mapper (M3)
India's Chandrayaan-1 successfully launched October 22, 2008 and went into lunar orbit a few weeks later. Commissioning of instruments began in late November and was near complete by the end of the year. Initial data for NASA's Moon Mineralogy Mapper (M3) were acquired across the Orientale Basin and the science results are discussed here. M 3 image-cube data provide mineralogy of the surface in geologic context. A major new result is that the existence and distribution of massive amounts of anorthosite as a continuous stratigraphic crustal layer is now irrefutable
Character and spatial distribution of OH/H<SUB>2</SUB>O on the surface of the moon seen by M<SUP>3</SUP> on Chandrayaan-1
The search for water on the surface of the anhydrous Moon had remained an unfulfilled quest for 40 years. However, the Moon Mineralogy Mapper (M3) on Chandrayaan-1 has recently detected absorption features near 2.8 to 3.0 micrometers on the surface of the Moon. For silicate bodies, such features are typically attributed to hydroxyl- and/or water-bearing materials. On the Moon, the feature is seen as a widely distributed absorption that appears strongest at cooler high latitudes and at several fresh feldspathic craters. The general lack of correlation of this feature in sunlit M3 data with neutron spectrometer hydrogen abundance data suggests that the formation and retention of hydroxyl and water are ongoing surficial processes. Hydroxyl/water production processes may feed polar cold traps and make the lunar regolith a candidate source of volatiles for human exploration