19 research outputs found

    Excitonic Resonances in Coherent Anti-Stokes Raman Scattering from Single-Walled Carbon Nanotubes

    Get PDF
    In this work we investigate the role of exciton resonances in coherent anti-Stokes Raman scattering (er-CARS) in single walled carbon nanotubes (SWCNTs). We drive the nanotube system in simultaneous phonon and excitonic resonances, where we observe a superior enhancement by orders of magnitude exceeding non-resonant cases. We investigated the resonant effects in five (n,m)(n,m) chiralities and find that the er-CARS intensity varies drastically between different nanotube species. The experimental results are compared with a perturbation theory model. Finally, we show that such giant resonant non-linear signals enable rapid mapping and local heating of individualized CNTs, suggesting easy tracking of CNTs for future nanotoxology studies and therapeutic application in biological tissues

    Excitonic Resonances in Coherent Anti-Stokes Raman Scattering from Single Wall Carbon Nanotubes

    Full text link
    In this work we investigate the role of exciton resonances in coherent anti-Stokes Raman scattering (er-CARS) in single walled carbon nanotubes (SWCNTs). We drive the nanotube system in simultaneous phonon and excitonic resonances, where we observe a superior enhancement by orders of magnitude exceeding non-resonant cases. We investigated the resonant effects in five (n,m)(n,m) chiralities and find that the er-CARS intensity varies drastically between different nanotube species. The experimental results are compared with a perturbation theory model. Finally, we show that such giant resonant non-linear signals enable rapid mapping and local heating of individualized CNTs, suggesting easy tracking of CNTs for future nanotoxology studies and therapeutic application in biological tissues.Comment: 17 pages, 6 figure

    Observation of Intra- and Inter-band Transitions in the Optical Response of Graphene

    Get PDF
    The optical conductivity of freely suspended graphene was examined under non-equilibrium conditions using femtosecond pump-probe spectroscopy. We observed a conductivity transient that varied strongly with the electronic temperature, exhibiting a crossover from enhanced to decreased absorbance with increasing pump fluence. The response arises from a combination of bleaching of the inter-band transitions by Pauli blocking and induced absorption from the intra-band transitions of the carriers. The latter dominates at low electronic temperature, but, despite an increase in Drude scattering rate, is overwhelmed by the former at high electronic temperature. The time-evolution of the optical conductivity in all regimes can described in terms of a time-varying electronic temperature.Comment: 10 pages (4 pages manuscript + Supplemental Info.

    Observation of out-of-plane vibrations in few-layer graphene

    Full text link
    We report the observation of layer breathing mode (LBM) vibrations in few-layer graphene (FLG) samples of thickness from 2 to 6 layers, exhibiting both Bernal (AB) and rhombohedral (ABC) stacking order. The LBM vibrations are identified using a Raman combination band lying around 1720 cm-1. From double resonance theory, we identify the feature as the LOZO' combination mode of the out-of-plane LBM (ZO') and the in-plane longitudinal optical mode (LO). The LOZO' Raman band is found to exhibit multiple peaks, with a unique line shape for each layer thickness and stacking order. These complex line shapes of the LOZO'-mode arise both from the material-dependent selection of different phonons in the double-resonance Raman process and from the detailed structure of the different branches of LBM in FLG.Comment: 17 pages, 7 figures, supplemental material include

    Defect-Induced Supercollision Cooling of Photoexcited Carriers in Graphene

    No full text
    Defects play a fundamental role in the energy relaxation of hot photoexcited carriers in graphene, thus a complete understanding of these processes are vital for improving the development of graphene devices. Recently, it has been theoretically predicted and experimentally demonstrated that defect-assisted acoustic phonon supercollision, the collision between a carrier and both an acoustic phonon and a defect, is an important energy relaxation process for carriers with excess energy below the optical phonon emission. Here, we studied samples with defects optically generated in a controlled manner to experimentally probe the supercollision model as a function of the defect density. We present pump and probe transient absorption measurements showing that the decay time decreases as the density of defect increases as predicted by the supercollision model
    corecore