115 research outputs found
A Poisson-Boltzmann approach for a lipid membrane in an electric field
The behavior of a non-conductive quasi-planar lipid membrane in an
electrolyte and in a static (DC) electric field is investigated theoretically
in the nonlinear (Poisson-Boltzmann) regime. Electrostatic effects due to
charges in the membrane lipids and in the double layers lead to corrections to
the membrane elastic moduli which are analyzed here. We show that, especially
in the low salt limit, i) the electrostatic contribution to the membrane's
surface tension due to the Debye layers crosses over from a quadratic behavior
in the externally applied voltage to a linear voltage regime. ii) the
contribution to the membrane's bending modulus due to the Debye layers
saturates for high voltages. Nevertheless, the membrane undulation instability
due to an effectively negative surface tension as predicted by linear
Debye-H\"uckel theory is shown to persist in the nonlinear, high voltage
regime.Comment: 15 pages, 4 figure
A small satellite version of a soft x-ray polarimeter
We describe a new implementation of a broad-band soft X-ray polarimeter, substantially based on a previous design. This implementation, the Pioneer Soft X-ray Polarimeter (PiSoX) is a SmallSat, designed for NASA’s call for Astrophysics Pioneers, small missions that could be CubeSats, balloon experiments, or SmallSats. As in REDSoX, the grating arrangement is designed optimally for the purpose of polarimetry with broad-band focussing optics by matching the dispersion of the spectrometer channels to laterally graded multilayers (LGMLs). The system can achieve polarization modulation factors over 90%. For PiSoX, the optics are lightweight Si mirrors in a one-bounce parabolic configuration. High efficiency, blazed gratings from opposite sectors are oriented to disperse to a LGML forming a channel covering the wavelength range from 35 Å to 75 Å (165 - 350 eV). Upon satellite rotation, the intensities of the dispersed spectra, after reflection and polarizing by the LGMLs, give the three Stokes parameters needed to determine a source’s linear polarization fraction and orientation. The design can be extended to higher energies as LGMLs are developed further. We describe examples of the potential scientific return from instruments based on this design
A Small Satellite Version of a Broad-band Soft X-ray Polarimeter
We describe a new implementation of a broad-band soft X-ray polarimeter,
substantially based on a previous design. This implementation, the Pioneer Soft
X-ray Polarimeter (PiSoX) is a SmallSat, designed for NASA's call for
Astrophysics Pioneers, small missions that could be CubeSats, balloon
experiments, or SmallSats. As in the REDSoX Polarimeter, the grating
arrangement is designed optimally for the purpose of polarimetry with
broad-band focussing optics by matching the dispersion of the spectrometer
channels to laterally graded multilayers (LGMLs). The system can achieve
polarization modulation factors over 90%. For PiSoX, the optics are lightweight
Si mirrors in a one-bounce parabolic configuration. High efficiency, blazed
gratings from opposite sectors are oriented to disperse to a LGML forming a
channel covering the wavelength range from 35 to 75 Angstroms (165 - 350 eV).
Upon satellite rotation, the intensities of the dispersed spectra, after
reflection and polarizing by the LGMLs, give the three Stokes parameters needed
to determine a source's linear polarization fraction and orientation. The
design can be extended to higher energies as LGMLs are developed further. We
describe examples of the potential scientific return from instruments based on
this design.Comment: 20 pages, 8 figures, to appear in Proceedings SPIE, volume 1144
Placement and orientation of individual DNA shapes on lithographically patterned surfaces
Artificial DNA nanostructures show promise for the organization of functional materials to create nanoelectronic or nano-optical devices. DNA origami, in which a long single strand of DNA is folded into a shape using shorter 'staple strands', can display 6-nm-resolution patterns of binding sites, in principle allowing complex arrangements of carbon nanotubes, silicon nanowires, or quantum dots. However, DNA origami are synthesized in solution and uncontrolled deposition results in random arrangements; this makes it difficult to measure the properties of attached nanodevices or to integrate them with conventionally fabricated microcircuitry. Here we describe the use of electron-beam lithography and dry oxidative etching to create DNA origami-shaped binding sites on technologically useful materials, such as SiO_2 and diamond-like carbon. In buffer with ~ 100 mM MgCl_2, DNA origami bind with high selectivity and good orientation: 70–95% of sites have individual origami aligned with an angular dispersion (±1 s.d.) as low as ±10° (on diamond-like carbon) or ±20° (on SiO_2)
DNA damage precedes apoptosis during the regression of the interdigital tissue in vertebrate embryos
DNA damage independent of caspase activation accompanies programmed cell death in different vertebrate embryonic organs. We analyzed the significance of DNA damage during the regression of the interdigital tissue, which sculpts the digits in the embryonic limb. Interdigit remodeling involves oxidative stress, massive apoptosis and cell senescence. Phosphorylation of H2AX mediated by ATM precedes caspase dependent apoptosis and cell senescence during interdigit regression. The association of ?H2AX with other downstream DNA repair factors, including MDC1, Rad50 and 53BP1 suggests a defensive response of cells against DNA damage. The relative distribution of cells ?H2AX-only positive, TUNEL-only positive, and cells double positive for both markers is consistent with a sequence of degenerative events starting by damage of the DNA. In support of this interpretation, the relative number of ?H2AX-only cells increases after caspase inhibition while the relative number of TUNELonly cells increases after inhibition of ATM. Furthermore, cultured interdigits survived and maintained intense chondrogenic potential, even at advanced stages of degeneration, discarding a previous commitment to die. Our findings support a new biological paradigm considering embryonic cell death secondary to genotoxic stimuli, challenging the idea that considers physiological cell death a cell suicide regulated by an internal death clock that pre-programmes degeneration
A small satellite version of a soft x-ray polarimeter
We describe a new implementation of a broad-band soft X-ray polarimeter, substantially based on a previous design. This implementation, the Pioneer Soft X-ray Polarimeter (PiSoX) is a SmallSat, designed for NASA’s call for Astrophysics Pioneers, small missions that could be CubeSats, balloon experiments, or SmallSats. As in REDSoX, the grating arrangement is designed optimally for the purpose of polarimetry with broad-band focussing optics by matching the dispersion of the spectrometer channels to laterally graded multilayers (LGMLs). The system can achieve polarization modulation factors over 90%. For PiSoX, the optics are lightweight Si mirrors in a one-bounce parabolic configuration. High efficiency, blazed gratings from opposite sectors are oriented to disperse to a LGML forming a channel covering the wavelength range from 35 Å to 75 Å (165 - 350 eV). Upon satellite rotation, the intensities of the dispersed spectra, after reflection and polarizing by the LGMLs, give the three Stokes parameters needed to determine a source’s linear polarization fraction and orientation. The design can be extended to higher energies as LGMLs are developed further. We describe examples of the potential scientific return from instruments based on this design.Accepted manuscrip
Induction and transmission of oncogene-induced senescence
Senescence is a cellular stress response triggered by diverse stressors, including oncogene activation, where it serves as a bona-fide tumour suppressor mechanism. Senescence can be transmitted to neighbouring cells, known as paracrine secondary senescence. Secondary senescence was initially described as a paracrine mechanism, but recent evidence suggests a more complex scenario involving juxtacrine communication between cells. In addition, single-cell studies described differences between primary and secondary senescent end-points, which have thus far not been considered functionally distinct. Here we discuss emerging concepts in senescence transmission and heterogeneity in primary and secondary senescence on a cellular and organ level
The role of epigenetics in renal ageing
An ability to separate natural ageing processes from processes specific to morbidities is required to understand the heterogeneity of age-related organ dysfunction. Mechanistic insight into how epigenetic factors regulate ageing throughout the life course, linked to a decline in renal function with ageing, is already proving to be of value in the analyses of clinical and epidemiological cohorts. Noncoding RNAs provide epigenetic regulatory circuits within the kidney, which reciprocally interact with DNA methylation processes, histone modification and chromatin. These interactions have been demonstrated to reflect the biological age and function of renal allografts. Epigenetic factors control gene expression and activity in response to environmental perturbations. They also have roles in highly conserved signalling pathways that modulate ageing, including the mTOR and insulin/insulin-like growth factor signalling pathways, and regulation of sirtuin activity. Nutrition, the gut microbiota, inflammation and environmental factors, including psychosocial and lifestyle stresses, provide potential mechanistic links between the epigenetic landscape of ageing and renal dysfunction. Approaches to modify the renal epigenome via nutritional intervention, targeting the methylome or targeting chromatin seem eminently feasible, although caution is merited owing to the potential for intergenerational and transgenerational effects
- …