350 research outputs found

    The roles of poly(ADP-ribose)-metabolizing enzymes in alkylation-induced cell death

    Get PDF
    Abstract.: Poly(ADP-ribose) (PAR) has been identified as a DNA damage-inducible cell death signal upstream of apoptosis-inducing factor (AIF). PAR causes the translocation of AIF from mitochondria to the nucleus and triggers cell death. In living cells, PAR molecules are subject to dynamic changes pending on internal and external stress factors. Using RNA interference (RNAi), we determined the roles of poly(ADP-ribose) polymerases-1 and -2 (PARP-1, PARP-2) and poly(ADP-ribose) glycohydrolase (PARG), the key enzymes configuring PAR molecules, in cell death induced by an alkylating agent. We found that PARP-1, but not PARP-2 and PARG, contributed to alkylation-induced cell death. Likewise, AIF translocation was only affected by PARP-1. PARP-1 seems to play a major role configuring PAR as a death signal involving AIF translocation regardless of the death pathway involve

    Personalised care in patients with chronic pain disorders: educational implications from a population-based study

    Get PDF
    Background: Personalised care offers psychological benefits to patients with chronic pain disorders. However, it is unclear which patient groups are prioritised, and which ones may require additional educational support in dealing with the psychological impact of chronic pain. Aim: To assess the relationship between having a chronic pain disorder and the likelihood of being offered a personalised care plan, and also identify underlying psychological vulnerabilities. Method: Bootstrapping was performed on data from 3717 respondents to the 2014 Health Survey for England. Participants were predominantly female (55.4%) and had a chronic pain disorder: (a) mental illness (anxiety, depression), (b) arthritis, rheumatism, fibrositis, (c) back problems, slipped disc, neck, and (d) other unspecified rheumatic problems (bones, joints, muscles). Results: Personalised care plans were more likely to be offered to patients with mental health disorders, and experiencing specific psychological issues around feelings of usefulness (Effect = 0.026, 95% CI = 0.001–0.051), decisiveness (Effect = 0.030, 95% CI = 0.008–0.057), and optimism about the future (Effect = −0.028, 95% CI = −0.046 to −0.012). By contrast, patients with arthritis, rheumatism, fibrositis, and other unspecified rheumatic problems (bones, joints, muscles), were less likely to be offered personalised care. Conclusion: Patients with a rheumatic condition, or other problems of bones, joints, and muscles, might require additional educational support in dealing with the emotional and psychological impact of living with a chronic pain disorder. This should include referral to structured patient education programmes that help improve self-management skills for chronic pain disorders

    The roles of poly(ADP-ribose)-metabolizing enzymes in alkylation-induced cell death

    Full text link
    Poly(ADP-ribose) (PAR) has been identified as a DNA damage-inducible cell death signal upstream of apoptosis-inducing factor (AIF). PAR causes the translocation of AIF from mitochondria to the nucleus and triggers cell death. In living cells, PAR molecules are subject to dynamic changes pending on internal and external stress factors. Using RNA interference (RNAi), we determined the roles of poly(ADP-ribose) polymerases-1 and -2 (PARP-1, PARP-2) and poly(ADP-ribose) glycohydrolase (PARG), the key enzymes configuring PAR molecules, in cell death induced by an alkylating agent. We found that PARP-1, but not PARP-2 and PARG, contributed to alkylation-induced cell death. Likewise, AIF translocation was only affected by PARP-1. PARP-1 seems to play a major role configuring PAR as a death signal involving AIF translocation regardless of the death pathway involved

    Village Water Ozonation System

    Get PDF
    The Village Water Ozonation System (VWOS) team’s core mission statement is to provide economically sustainable and culturally sensitive drinking water solutions for communities, to empower communities with the ability to properly maintain their drinking water supply, and to transform people’s lives by decreasing the occurrences of waterborne diseases. Currently, the VWOS team is partnering with Friends in Action to design and implement two drinking water treatment systems for the community living on Rama Cay, an island in the Bluefields Lagoon on the eastern coastline of Nicaragua. The wells on the island are contaminated with E. coli and other bacteria and contain high levels of salt that cause the water to be unhealthy, distasteful, and corrosive to metal equipment in the system. The team hopes to design a system that will disinfect the water, remove salinity from the well water with a safe and efficient disposal of all byproducts, and decrease corrosion agents. VWOS is partnering with Forward Edge International for the third time (Nicaragua 2009 and Mexico 2016) to design water treatment systems for communities in Oaxaca, Mexico and Kijabe, Kenya. The system for Oaxaca is ready for implementation and awaits availability to travel. The system for Kijabe is in the initial stage of communicating with the client on specifics for the design.https://mosaic.messiah.edu/engr2021/1018/thumbnail.jp

    The rewarding and locomotor-sensitizing effects of repeated cocaine administration are distinct and separable in mice

    Get PDF
    Repeated psychostimulant exposure progressively increases their potency to stimulate motor activity in rodents. This behavioral or locomotor sensitization is considered a model for some aspects of drug addiction in humans, particularly drug craving during abstinence. However, the role of increased motor behavior in drug reward remains incompletely understood. Intracranial self-stimulation (ICSS) was measured concurrently with locomotor activity to determine if acute intermittent cocaine administration had distinguishable effects on motor behavior and perception of brain stimulation-reward (BSR) in the same mice. Sensitization is associated with changes in neuronal activity and glutamatergic neurotransmission in brain reward circuitry. Expression of AMPA receptor subunits (GluR1 and GluR2) and CRE binding protein (CREB) was measured in the ventral tegmental area (VTA), dorsolateral striatum (STR) and nucleus accumbens (NAc) before and after a sensitizing regimen of cocaine, with and without ICSS. Repeated cocaine administration sensitized mice to its locomotor stimulating effects but not its ability to potentiate BSR. ICSS increased GluR1 in the VTA but not NAc or STR, demonstrating selective changes in protein expression with electrical stimulation of discrete brain structures. Repeated cocaine reduced GluR1, GluR2 and CREB expression in the NAc, and reductions of GluR1 and GluR2 but not CREB were further enhanced by ICSS. These data suggest that the effects of repeated cocaine exposure on reward and motor processes are dissociable in mice, and that reduction of excitatory neurotransmission in the NAc may predict altered motor function independently from changes in reward perception

    Different Contributions of Dopamine D1 and D2 Receptor Activity to Alcohol Potentiation of Brain Stimulation Reward in C57BL/6J and DBA/2J Mice

    Get PDF
    C57BL/6J (C57) and DBA/2J (DBA) mice respond differently to drugs that affect dopamine systems, including alcohol. The current study compared effects of D1 and D2 receptor agonists and antagonists, and the interaction between D1/D2 antagonists and alcohol, on intracranial self-stimulation in male C57 and DBA mice to determine the role of dopamine receptors in the effects of alcohol on brain stimulation reward (BSR). In the initial strain comparison, dose effects on BSR thresholds and maximum operant response rates were determined for the D1 receptor agonist SKF-82958 (±-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine; 0.1–0.56 mg/kg) and antagonist SCH 23390 (+-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepinehydrochloride; 0.003–0.056 mg/kg), and the D2 receptor agonist quinpirole (0.1–3.0 mg/kg) and antagonist raclopride (0.01–0.56 mg/kg). For the alcohol interaction, SCH 23390 (0.003 mg/kg) or raclopride (0.03 mg/kg) was given before alcohol (0.6–2.4 g/kg p.o.). D1 antagonism dose-dependently elevated and SKF-82958 dose-dependently lowered BSR threshold in both strains; DBA mice were more sensitive to SKF-82958 effects. D2 antagonism dose-dependently elevated BSR threshold only in C57 mice. Low doses of quinpirole elevated BSR threshold equally in both strains, whereas higher doses of quinpirole lowered BSR threshold only in C57 mice. SCH 23390, but not raclopride, prevented lowering of BSR threshold by alcohol in DBA mice. Conversely, raclopride, but not SCH 23390, prevented alcohol potentiation of BSR in C57 mice. These results extend C57 and DBA strain differences to D1/D2 sensitivity of BSR, and suggest differential involvement of D1 and D2 receptors in the acute rewarding effects of alcohol in these two mouse strains

    Mephedrone (4-methylmethcathinone) and intracranial self-stimulation in C57BL/6J mice: Comparison to cocaine

    Get PDF
    The recreational use of cathinone-derived synthetic stimulants, also known as "bath salts", has increased during the last five years. A commonly abused drug in this class is mephedrone (4-methylmethcathinone or "meow-meow"), which alters mood and produces euphoria in humans. Intracranial self-stimulation (ICSS) measures the behavioral effects of neuroactive compounds on brain reward circuitry. We used ICSS to investigate the ability of mephedrone and cocaine to alter responding for electrical stimulation of the medial forebrain bundle in C57BL/6J mice. Adult male C57BL/6J mice (n=6) implanted with unipolar stimulating electrodes at the level of the lateral hypothalamus responded for varying frequencies of brain stimulation reward (BSR). The frequency that supported half maximal responding (EF50), the BSR threshold (θ(0)), and the maximum response rate were determined before and after intraperitoneal administration of saline, mephedrone (1.0, 3.0, or 10.0 mg/kg), or cocaine (1.0, 3.0, or 10.0 mg/kg). Mephedrone dose-dependently decreased EF50 (max. effect=72.3% of baseline), θ(0) (max. effect=59.6% of baseline), and the maximum response rate (max. effect=67.0% of baseline) beginning 15 min after administration. Beginning immediately after administration, cocaine dose-dependently lowered EF50 (max. effect=66.4% of baseline) and θ(0) (max. effect=60.1% of baseline) but did not affect maximum response rate. These results suggest that mephedrone, like cocaine, potentiates BSR, which may indicate its potential for abuse. Given the public health concern of stimulant abuse, future studies will be necessary to determine the cellular and behavioral effects of acute and chronic mephedrone use

    Potentiation of brain stimulation reward by morphine: effects of neurokinin-1 receptor antagonism

    Get PDF
    The abuse potential of opioids may be due to their reinforcing and rewarding effects, which may be attenuated by neurokinin-1 receptor (NK1R) antagonists

    Changes in Sensitivity of Reward and Motor Behavior to Dopaminergic, Glutamatergic, and Cholinergic Drugs in a Mouse Model of Fragile X Syndrome

    Get PDF
    Fragile X syndrome (FXS) is a leading cause of intellectual disability. FXS is caused by loss of function of the FMR1 gene, and mice in which Fmr1 has been inactivated have been used extensively as a preclinical model for FXS. We investigated the behavioral pharmacology of drugs acting through dopaminergic, glutamatergic, and cholinergic systems in fragile X (Fmr1-/Y) mice with intracranial self-stimulation (ICSS) and locomotor activity measurements. We also measured brain expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis. Fmr1-/Y mice were more sensitive than wild type mice to the rewarding effects of cocaine, but less sensitive to its locomotor stimulating effects. Anhedonic but not motor depressant effects of the atypical neuroleptic, aripiprazole, were reduced in Fmr1-/Y mice. The mGluR5-selective antagonist, 6-methyl-2-(phenylethynyl)pyridine (MPEP), was more rewarding and the preferential M1 antagonist, trihexyphenidyl, was less rewarding in Fmr1-/Y than wild type mice. Motor stimulation by MPEP was unchanged, but stimulation by trihexyphenidyl was markedly increased, in Fmr1-/Y mice. Numbers of midbrain TH+ neurons in the ventral tegmental area were unchanged, but were lower in the substantia nigra of Fmr1-/Y mice, although no changes in TH levels were found in their forebrain targets. The data are discussed in the context of known changes in the synaptic physiology and pharmacology of limbic motor systems in the Fmr1-/Y mouse model. Preclinical findings suggest that drugs acting through multiple neurotransmitter systems may be necessary to fully address abnormal behaviors in individuals with FXS

    Sudden olfactory loss as an early marker of COVID-19: a nationwide Italian survey

    Get PDF
    Purpose: The presence of many asymptomatic COVID-19 cases may increase the risks of disease dissemination, mainly for physicians. There are numerous reports on the frequent findings of sudden anosmia or hyposmia, before or at the same time of the typical COVID-19 symptoms onset. The aim of this study was to verify the association of olfactory impairment and COVID-19, providing a basis for subsequent research in the field of COVID-19 clinical heterogeneity. Methods: We developed a 15-item online questionnaire on “Sudden Olfactory Loss (SOL) and COVID-19” that was administered during March 2020 to Italian general practitioners registered to a social media group. Results: One hundred and eighty responses were received. SOL was identified as a significant sign of infection in COVID-19 patients, mainly aged between 30 and 40 years, even in the absence of other symptoms. SOL was present as an initial symptom in 46.7% of subjects, and in 16.7%, it was the only symptom. Among the COVID-19 confirmed cases, SOL occurred as the only symptom in 19.2% of patients. Conclusion: SOL could represent a possible early symptom in otherwise asymptomatic COVID-19 subjects. Subjects affected by SOL should be considered as potential COVID-19 cases. Level of evidence: 4
    corecore