64 research outputs found

    The invasion process of bovine erythrocyte by Babesia divergens: knowledge from an in vitro assay

    Get PDF
    Babesia divergens is a tick-transmitted apicomplexan parasite for which asexual multiplication in its vertebrate hosts is restricted to erythrocytes. Current knowledge of invasion of these target cells is limited. An efficient in vitro invasion assay was set up to gain access to this information. Parasites prepared from infected RBC, lysed by electroporation, and mixed with bovine RBC in a selected synthetic medium (RPMI 1640 supplemented with calcium) were able to establish subsequent cultures with parasitemia ranging from 6 to 14%. Free parasites remaining in the invasion medium could be eliminated by Percoll gradient and culture could be pursued with the freshly invaded erythrocytes. In this way, the invasion time window could be shortened to obtain a synchronised start of the culture or to study the kinetics of invasion. With this assay we demonstrate that 1) erythrocyte invasion by B. divergens is a rapid process since 70% of the invasion-competent parasites invaded the RBC in less than 45 s; 2) all invasion-competent parasites achieved invasion within 10 min of contact; 3) one erythrocyte could be invaded concomitantly by two merozoites; 4) despite a synchronous start, the parasite population evolved heterogeneously resulting in a progressive loss of synchronisation. Western blot analysis of proteins collected from invasion medium were performed with sera from animals experimentally infected with B. divergens and highlighted several proteins. The dose-dependent, inhibitory effects of these sera on B. divergens invasion suggest that these proteins might be involved in the invasion process. Further investigations are required for their characterisation

    Individual heterogeneity in erythrocyte susceptibility to Babesia divergens is a critical factor for the outcome of experimental spleen-intact sheep infections

    Get PDF
    Susceptibility of sheep erythrocytes to Babesia divergens was investigated in vitro and a high inter-individual variability in their ability to support parasite population development was demonstrated, with some individuals having refractory red blood cells (RBC). As neither changes in growth conditions nor the use of different B. divergens strains influenced the level of susceptibility, the main factor postulated for this variability is the erythrocyte itself. Sheep therefore represent an excellent in vitro model to study the parasite-erythrocyte interaction. In addition, the existence of refractory RBC should help in the identification of the erythrocyte components required for B. divergens development. Experimental infections were carried out on spleen-intact sheep characterized by refractory or fully susceptible erythrocyte types. These differences translated into the successful infection of only those animals with susceptible erythrocytes: infected animals showed no clinical signs, but maintained an asymptomatic persistent infection, as usually observed in the natural bovine host. Sheep therefore represent model organisms that can allow us to study interactions between B. divergens and its vertebrate host at different levels of biological organisation, from the target cell to the intact animal, and represent an experimental infection model of concomitant immunity. Only a low percentage (13%) of the sheep population tested possessed susceptible erythrocytes and the potential role of sheep as a natural host or reservoir of B. divergens is discussed

    Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission

    Get PDF
    Babesia, the causal agent of babesiosis, are tick-borne apicomplexan protozoa. True babesiae (Babesia genus sensu stricto) are biologically characterized by direct development in erythrocytes and by transovarial transmission in the tick. A large number of true Babesia species have been described in various vertebrate and tick hosts. This review presents the genus then discusses specific adaptations of Babesia spp. to their hosts to achieve efficient transmission. The main adaptations lead to long-lasting interactions which result in the induction of two reservoirs: in the vertebrate host during low long-term parasitemia and throughout the life cycle of the tick host as a result of transovarial and transstadial transmission. The molecular bases of these adaptations in vertebrate hosts are partially known but few of the tick-host interaction mechanisms have been elucidated

    Natural Transmission of Zoonotic Babesia spp. by Ixodes ricinus Ticks

    Get PDF
    To determine characteristics of natural transmission of Babesia sp. EU1 and B. divergens by adult Ixodes ricinus ticks, we examined tick salivary gland contents. We found that I. ricinus is a competent vector for EU1 and that their sporozoites directly invade erythrocytes. We conclude that EU1 is naturally transmitted by I. ricinus

    Infection Kinetics and Tropism of Borrelia burgdorferi sensu lato in Mouse After Natural (via Ticks) or Artificial (Needle) Infection Depends on the Bacterial Strain

    Get PDF
    Borrelia burgdorferi sl is a complex of pathogen bacteria transmitted to the host by Ixodes ticks. European Ixodes ricinus ticks transmit different B. burgdorferi species, pathogenic to human. Bacteria are principally present in unfed tick midgut, then migrate to salivary glands during blood meal and infect a new host via saliva. In this study, efficiency of transmission in a mouse model of three pathogen species belonging to the B. burgdorferi sl complex, B. burgdorferi sensu stricto (B31, N40, and BRE-13), B. afzelii (IBS-5), and B. bavariensis (PBi) is examined in order to evaluate infection risk after tick bite. We compared the dissemination of the Borrelia species in mice after tick bite and needle injection. Location in the ticks and transmission to mice were also determined for the three species by following infection kinetics. After inoculation, we found a significant prevalence in the brain for PBi and BRE-13, in the heart, for PBi, in the skin where B31 was more prevalent than PBi and in the ankle where both B31 and N40 were more present than PBi. After tick bite, statistical analyses showed that BRE-13 was more prevalent than N40 in the brain, in the bladder and in the inguinal lymph node. When Borrelia dissemination was compared after inoculation and tick bite, we observed heart infection only after tick inoculation of BRE-13, and PBi was only detected after tick bite in the skin. For N40, a higher number of positive organs was found after inoculation compared to tick bite. All European B. burgdorferi sl strains studied were detected in female salivary glands before blood meal and infected mice within 24 h of tick bite. Moreover, Borrelia-infected nymphs were able to infect mice as early as 12 h of tick attachment. Our study shows the need to remove ticks as early as possible after attachment. Moreover, Borrelia tropism varied according to the strain as well as between ticks bite and needle inoculation, confirming the association between some strains and clinical manifestation of Lyme borreliosis, as well as the role played by tick saliva in the efficiency of Borrelia infection and dissemination in vertebrates

    The Complexity of Piroplasms Life Cycles

    Get PDF
    Although apicomplexan parasites of the group Piroplasmida represent commonly identified global risks to both animals and humans, detailed knowledge of their life cycles is surprisingly limited. Such a discrepancy results from incomplete literature reports, nomenclature disunity and recently, from large numbers of newly described species. This review intends to collate and summarize current knowledge with respect to piroplasm phylogeny. Moreover, it provides a comprehensive view of developmental events of Babesia, Theileria, and Cytauxzoon representative species, focusing on uniform consensus of three consecutive phases: (i) schizogony and merogony, asexual multiplication in blood cells of the vertebrate host; (ii) gamogony, sexual reproduction inside the tick midgut, later followed by invasion of kinetes into the tick internal tissues; and (iii) sporogony, asexual proliferation in tick salivary glands resulting in the formation of sporozoites. However, many fundamental differences in this general consensus occur and this review identifies variables that should be analyzed prior to further development of specific anti-piroplasm strategies, including the attractive targeting of life cycle stages of Babesia or Theileria tick vectors

    The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction

    Get PDF
    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5′ ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct

    Surveillance of avian malaria and related haemoparasites in common terns (Sterna hirundo) on the Atlantic coast of South America

    Get PDF
    Haemosporidia (Apicomplexa, Haemosporida) are protozoa that infect vertebrate blood cells and are transmitted by vectors. Among vertebrates, birds possess the greatest diversity of haemosporidia, historically placed in 3 genera: Haemoproteus, Leucocytozoon and Plasmodium, the causative agent of avian malaria. In South America, existing data on haemosporidia are spatially and temporally dispersed, so increased surveillance is needed to improve the determination and diagnosis of these parasites. During the non-breeding season in 2020 and 2021, 60 common terns (Sterna hirundo) were captured and bled as part of ongoing research on the population health of migratory birds on the Argentinian Atlantic coast. Blood samples and blood smears were obtained. Fifty-eight samples were screened for Plasmodium, Haemoproteus and Leucocytozoon, as well as for Babesia parasites by nested polymerase chain reaction and by microscopic examination of smears. Two positive samples for Plasmodium were found. The cytochrome b lineages detected in the present study are found for the first time, and are close to Plasmodium lineages found in other bird orders. The low prevalence (3.6%) of haemoparasites found in this research was similar to those reported for previous studies on seabirds, including Charadriiformes. Our findings provide new information about the distribution and prevalence of haemosporidian parasites from charadriiforms in the southernmost part of South America, which remains understudied

    Isolation of Babesia divergens from carrier cattle blood using in vitro culture

    No full text
    Babesia divergens, the main causative agent of bovine babesiosis in Western Europe, was isolated from naturally infected cattle. Ninety-six blood samples were examined by means of an in vitro culture technique in sheep erythrocytes: 19 of them were collected from animals in the acute phase of the disease with visible parasitemia on blood smears, while the 77 remaining animals showed no microscopically detectable parasites. B. divergens was cultured from the 19 first blood samples as well as from 31 samples collected from asymptomatic animals. The time period before parasites could be detected in the culture varied in the latter samples from 6 to 20 days. The effects of sampling condition (anticoagulant used) and storage length were tested. A good correlation was obtained between immunofluorescent antibody test and culture, with identical results (positive or negative) for 89.6% of the samples collected from asymptomatic animals. The sensitivity of the in vitro culture method was determined and was about 10 parasites/mL of whole blood from three independent experiments performed with three different isolates, confirming its suitability to detect and culture diverse B. divergens isolates from carrier cattle. The parasites could indeed be isolated 9 months after the acute babesiosis phase in the blood of naturally infected animals. The 50 isolates collected in this study were successfully subcultured, cryopreserved and resuscitated using the same culture medium. The in vitro isolation of B. divergens from asymptomatic carrier cattle was achieved and will allow the analysis of parasite diversity within cattle herds
    corecore