11 research outputs found
A novel enzymatically-mediated drug delivery carrier for bone tissue engineering applications: combining biodegradable starch-based microparticles and differentiation agents
In many biomedical applications, the performance
of biomaterials depends largely on their degradation
behavior. For instance, in drug delivery applications, the
polymeric carrier should degrade under physiological
conditions slowly releasing the encapsulated drug. The aim
of this work was, therefore, to develop an enzymaticmediated
degradation carrier system for the delivery of
differentiation agents to be used in bone tissue engineering
applications. For that, a polymeric blend of starch with
polycaprolactone (SPCL) was used to produce a microparticle
carrier for the controlled release of dexamethasone
(DEX). In order to investigate the effect of enzymes on the
degradation behavior of the developed system and release
profile of the encapsulated osteogenic agent (DEX), the
microparticles were incubated in phosphate buffer solution
in the presence of a-amylase and/or lipase enzymes (at
physiological concentrations), at 37 C for different periods
of time. The degradation was followed by gravimetric
measurements, scanning electron microscopy (SEM) and
Fourier transformed infrared (FTIR) spectroscopy and the
release of DEX was monitored by high performance liquid
chromatography (HPLC). The developed microparticles
were shown to be susceptible to enzymatic degradation, as observed by an increase in weight loss and porosity with
degradation time when compared with control samples
(incubation in buffer only). For longer degradation times,
the diameter of the microparticles decreased significantly
and a highly porous matrix was obtained. The in vitro
release studies showed a sustained release pattern with
48% of the encapsulated drug being released for a period of
30 days. As the degradation proceeds, it is expected that
the remaining encapsulated drug will be completely
released as a consequence of an increasingly permeable
matrix and faster diffusion of the drug. Cytocompatibility
results indicated the possibility of the developed microparticles
to be used as biomaterial due to their reduced
cytotoxic effects
Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends
The fields of tissue engineering and regenerative medicine aim at promoting the regeneration of tissues or replacing failing or malfunctioning organs, by means of combining a scaffold/support material, adequate cells and bioactive molecules. Different materials have been proposed to be used as both three-dimensional porous scaffolds and hydrogel matrices for distinct tissue engineering strategies. Among them, polymers of natural origin are one of the most attractive options, mainly due to their similarities with the extracellular matrix (ECM), chemical versatility as well as typically good biological performance. In this review, the most studied and promising and recently proposed naturally derived polymers that have been suggested for tissue engineering applications are described. Different classes of such type of polymers and their blends with synthetic polymers are analysed, with special focus on polysaccharides and proteins, the systems that are more inspired by the ECM. The adaptation of conventional methods or non-conventional processing techniques for processing scaffolds from natural origin based polymers is reviewed. The use of particles, membranes and injectable systems from such kind of materials is also overviewed, especially what concerns the present status of the research that should lead towards their final application. Finally, the biological performance of tissue engineering constructs based on natural-based polymers is discussed, using several examples for different clinically relevant applications
An Overview of Chitosan Nanofibers and their Applications in the Drug Delivery Process
Chitosan is a polycationic natural polymer which is abundant in nature. Chitosan has gained much attention as natural polymer in the biomedical field. The up to date drug delivery as well as the nanotechnology in controlled release of drugs from chitosan nanofibers are focused in this review. Electrospinning is one of the most established and widely used techniques for preparing nanofibers. This method is versatile and efficient for the production of continuous nanofibers. The chitosan-based nanofibers are emerging materials in the arena of biomaterials. Recent studies revealed that various drugs such as antibiotics, chemotherapeutic agents, proteins and anti-inflammatory analgesic drugs were successfully loaded onto electrospun nanofibers. Chitosan nanofibers have several outstanding properties for different significant pharmaceutical applications such as wound dressing, tissue engineering, enzyme immobilization, and drug delivery systems. This review highlights different issues of chitosan nanofibers in drug delivery applications, starting from the preparation of chitosan nanofibers, followed by giving an idea about the biocompatibility and degradation of chitosan nanofibers, then describing how to load the drug into the nanofibers. Finally, the major applications of chitosan nanofibers in drug delivery systems