45 research outputs found

    Structure-based design of a phosphotyrosine-masked covalent ligand targeting the E3 ligase SOCS2

    Get PDF
    The Src homology 2 (SH2) domain recognizes phosphotyrosine (pY) post translational modifications in partner proteins to trigger downstream signaling. Drug discovery efforts targeting the SH2 domains have long been stymied by the poor drug-like properties of phosphate and its mimetics. Here, we use structure-based design to target the SH2 domain of the E3 ligase suppressor of cytokine signaling 2 (SOCS2). Starting from the highly ligand-efficient pY amino acid, a fragment growing approach reveals covalent modification of Cys111 in a co-crystal structure, which we leverage to rationally design a cysteine-directed electrophilic covalent inhibitor MN551. We report the prodrug MN714 containing a pivaloyloxymethyl (POM) protecting group and evidence its cell permeability and capping group unmasking using cellular target engagement and in-cell 19F NMR spectroscopy. Covalent engagement at Cys111 competitively blocks recruitment of cellular SOCS2 protein to its native substrate. The qualified inhibitors of SOCS2 could find attractive applications as chemical probes to understand the biology of SOCS2 and its CRL5 complex, and as E3 ligase handles in proteolysis targeting chimera (PROTACs) to induce targeted protein degradation.</p

    Discovery of XL01126:A Potent, Fast, Cooperative, Selective, Orally Bioavailable, and Blood-Brain Barrier Penetrant PROTAC Degrader of Leucine-Rich Repeat Kinase 2

    Get PDF
    [Image: see text] Leucine-rich repeat kinase 2 (LRRK2) is one of the most promising targets for Parkinson’s disease. LRRK2-targeting strategies have primarily focused on type 1 kinase inhibitors, which, however, have limitations as the inhibited protein can interfere with natural mechanisms, which could lead to undesirable side effects. Herein, we report the development of LRRK2 proteolysis targeting chimeras (PROTACs), culminating in the discovery of degrader XL01126, as an alternative LRRK2-targeting strategy. Initial designs and screens of PROTACs based on ligands for E3 ligases von Hippel–Lindau (VHL), Cereblon (CRBN), and cellular inhibitor of apoptosis (cIAP) identified the best degraders containing thioether-conjugated VHL ligand VH101. A second round of medicinal chemistry exploration led to qualifying XL01126 as a fast and potent degrader of LRRK2 in multiple cell lines, with DC(50) values within 15–72 nM, D(max) values ranging from 82 to 90%, and degradation half-lives spanning from 0.6 to 2.4 h. XL01126 exhibits high cell permeability and forms a positively cooperative ternary complex with VHL and LRRK2 (Ξ± = 5.7), which compensates for a substantial loss of binary binding affinities to VHL and LRRK2, underscoring its strong degradation performance in cells. Remarkably, XL01126 is orally bioavailable (F = 15%) and can penetrate the blood–brain barrier after either oral or parenteral dosing in mice. Taken together, these experiments qualify XL01126 as a suitable degrader probe to study the noncatalytic and scaffolding functions of LRRK2 in vitro and in vivo and offer an attractive starting point for future drug development

    Comparative Assessment of Quality Requirements for Medicinal Products Containing Diosmin

    Get PDF
    Currently, there is an increase in preand post-approval testing of medicinal products containing diosmin and hence a need to unify approaches to standardisation of this group of pharmaceuticals. Moreover, the State Pharmacopoeia of the Russian Federation lacks a monograph for these products.The aim of the study was to determine an approach to standardisation of medicinal products containing diosmin.Materials and methods: the study analysed scientific publications, as well as monographs of leading foreign pharmacopoeias. Experimental work was carried out using samples of diosmin-containing pharmaceuticals in the form of 500 and 1000 mg film-coated tablets produced by Russian and foreign manufacturers. The study involved high performance liquid chromatography with UV detection using an Agilent 1260 Infinity II liquid chromatography system with a diode array detector. The following reference standards were used: a diosmin RS, USP grade; a hesperidin CRS, Ph. Eur. Grade; and a diosmin CRS for testing chromatography system suitability for identification of impurities A, B, C, D, E, and F, Ph. Eur. grade.Results: the authors reviewed quality requirements for pharmaceutical products containing diosmin and analysed experimental data obtained during preand post-approval testing of Russian and foreign medicines. The comparison of regulatory documents for registered diosmin-containing medicinal products showed a difference in approaches to assessing the contents of related substances and active pharmaceutical ingredients. Having analysed the literature, experimental data and regulatory requirements for standardisation of diosmin-containing pharmaceuticals, the authors recommended an approach to standardisation. According to the approach, concomitant flavonoids (hesperidin, isorchoifolin, linarin, and diosmetin) contributing to the pharmacological activity of a medicinal product are specified as part of Assay, and process-related by-products (impurities A and D) are specified and evaluated as part of Related substances tests.Conclusion: the authors propose to evaluate the contents of concomitant flavonoids (hesperidin, isorchoifolin, linarin, diosmetin) under Assay and to specify impurities A and D, as well as single unidentified impurities and total amount of impurities under Related substances

    Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΡƒΠ½ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π’Π­Π–Π₯-ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ опрСдСлСния родствСнных примСсСй ΠΈ количСствСнной ΠΎΡ†Π΅Π½ΠΊΠΈ Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ вСщСства ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² ΠΏΠ°ΠΏΠ°Π²Π΅Ρ€ΠΈΠ½Π° Π³ΠΈΠ΄Ρ€ΠΎΡ…Π»ΠΎΡ€ΠΈΠ΄Π°

    Get PDF
    Abstract. Papaverine hydrochloride products are used as anticonvulsants in routine medical practice. Most of the approved product specification files include thin-layer chromatography for assessment of product-related impurities and UV spectrophotometry for determination of active pharmaceutical ingredients. An HPLC assay is not used for determination of papaverine hydrochloride in drug dosage forms.The aim of the study was to develop an HPLC test method for determination of product-related impurities and for quantification of papaverine hydrochloride in solutions for injection, tablets, and rectal suppositories.Materials and methods: samples of the following Russian-made papaverine products were used in the study: Papaverine, solution for injection, 20Β mg/mL; Papaverine, rectal suppositories, 20Β mg; Papaverine, tablets, 40Β mg. The Agilent 1260 Infinity II DAD System was used for the HPLC assay, and the Agilent 8453Π• UV-Vis System was used for recording UV spectra. The determination of product-related impurities and the assay of active ingredients were performed simultaneously by HPLC using a reversed-phase column Kromasil 100-5-C18, 250Γ—4.6Β mm, 5 ΞΌm, the gradient elution mode, and detection atΒ  Β  Β  Β  238 nm. Papaverine Hydrochloride USP RS, 99% purity, and Noscapine EP CRS were used as reference standards.Results: the study demonstrated that determination of product-related impurities and assay of active ingredients in papaverine products can be performed simultaneously using HPLC.Conclusions: the authors proposed an HPLC test method for determination of active ingredients in papaverine products, which is aligned with the β€œconsistent standardisation” principle and can be recommended for inclusion into draft monographs for papaverine products.РСзюмС. ΠŸΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹ ΠΏΠ°ΠΏΠ°Π²Π΅Ρ€ΠΈΠ½Π° Π³ΠΈΠ΄Ρ€ΠΎΡ…Π»ΠΎΡ€ΠΈΠ΄Π° ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Π² мСдицинской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ Π² качСствС спазмолитичСского срСдства. Π’ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ зарСгистрированных Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ² Π½Π° эти ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΎΡ†Π΅Π½ΠΊΠΈ родствСнных примСсСй ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ тонкослойной Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ, для опрСдСлСния Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ вСщСства ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π£Π€-спСктрофотомСтрия. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²Π΅Π½Π½ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ°ΠΏΠ°Π²Π΅Ρ€ΠΈΠ½Π° Π³ΠΈΠ΄Ρ€ΠΎΡ…Π»ΠΎΡ€ΠΈΠ΄Π° Π² лСкарствСнных Ρ„ΠΎΡ€ΠΌΠ°Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ высокоэффСктивной Тидкостной Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ (Π’Π­Π–Π₯) Π½Π΅ проводится.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹: Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ опрСдСлСния родствСнных примСсСй ΠΈ количСствСнного опрСдСлСния ΠΏΠ°ΠΏΠ°Π²Π΅Ρ€ΠΈΠ½Π° Π³ΠΈΠ΄Ρ€ΠΎΡ…Π»ΠΎΡ€ΠΈΠ΄Π° Π² растворС для ΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΠΉ, Ρ‚Π°Π±Π»Π΅Ρ‚ΠΊΠ°Ρ… ΠΈ суппозиториях Ρ€Π΅ΠΊΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π’Π­Π–Π₯.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ исслСдования являлись ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² ΠΏΠ°ΠΏΠ°Π²Π΅Ρ€ΠΈΠ½Π° отСчСствСнных ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ: Β«ΠŸΠ°ΠΏΠ°Π²Π΅Ρ€ΠΈΠ½, раствор для ΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΠΉ 20Β ΠΌΠ³/ΠΌΠ»Β», Β«ΠŸΠ°ΠΏΠ°Π²Π΅Ρ€ΠΈΠ½, суппозитории Ρ€Π΅ΠΊΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅, 20Β ΠΌΠ³Β», Β«ΠŸΠ°ΠΏΠ°Π²Π΅Ρ€ΠΈΠ½, Ρ‚Π°Π±Π»Π΅Ρ‚ΠΊΠΈ 40Β ΠΌΠ³Β». ИсслСдованиС ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π’Π­Π–Π₯ Π½Π° Тидкостном Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Π΅ Agilent 1260 Infinity II DAD System , Ρ€Π΅Π³ΠΈΡΡ‚Ρ€Π°Ρ†ΠΈΡŽ Π£Π€-спСктров – Π½Π° спСктрофотомСтрС Agilent 8453Π• UV-Vis System. ΠžΡ†Π΅Π½ΠΊΡƒ содСрТания родствСнных примСсСй ΠΈ количСствСнноС ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… вСщСств ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π’Π­Π–Π₯ Π½Π° ΠΎΠ±Ρ€Π°Ρ‰Π΅Π½Π½ΠΎ-Ρ„Π°Π·ΠΎΠ²ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΊΠ΅ Kromasil 100-5-C18, Ρ€Π°Π·ΠΌΠ΅Ρ€ ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ 250Γ—4,6Β ΠΌΠΌ, Ρ€Π°Π·ΠΌΠ΅Ρ€ частиц 5Β ΠΌΠΊΠΌ, Π² условиях Π³Ρ€Π°Π΄ΠΈΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ ΡΠ»ΡŽΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ с Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡ€ΠΈ 238Β Π½ΠΌ. Π’ качСствС стандартных ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² использовали ΠΏΠ°ΠΏΠ°Π²Π΅Ρ€ΠΈΠ½Π° Π³ΠΈΠ΄Ρ€ΠΎΡ…Π»ΠΎΡ€ΠΈΠ΄ ΠΊΠ²Π°Π»ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ USP RS с содСрТаниСм Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ вСщСства 99,9% ΠΈ носкапин ΠΊΠ²Π°Π»ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ EP CRS.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ опрСдСлСния родствСнных примСсСй ΠΈ количСствСнного опрСдСлСния Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… вСщСств Π² ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°Ρ… ΠΏΠ°ΠΏΠ°Π²Π΅Ρ€ΠΈΠ½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π’Π­Π–Π₯.Π’Ρ‹Π²ΠΎΠ΄Ρ‹: ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° опрСдСлСния Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… вСщСств Π² ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°Ρ… ΠΏΠ°ΠΏΠ°Π²Π΅Ρ€ΠΈΠ½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π’Π­Π–Π₯, ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‰Π°Ρ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡƒ сквозной стандартизации, которая ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π° для Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ Π² ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠΏΠ΅ΠΉΠ½Ρ‹Ρ… статСй Π½Π° ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹ ΠΏΠ°ΠΏΠ°Π²Π΅Ρ€ΠΈΠ½Π°

    Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΎΡ†Π΅Π½ΠΊΠ° Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ ΠΊ качСству лСкарствСнных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ², содСрТащих диосмин

    Get PDF
    Currently, there is an increase in pre- and post-approval testing of medicinal products containing diosmin and hence a need to unify approaches to standardisation of this group of pharmaceuticals. Moreover, the State Pharmacopoeia of the Russian Federation lacks a monograph for these products.The aim of the study was to determine an approach to standardisation of medicinal products containing diosmin.Materials and methods: the study analysed scientific publications, as well as monographs of leading foreign pharmacopoeias. Experimental work was carried out using samples of diosmin-containing pharmaceuticals in the form of 500 and 1000 mg film-coated tablets produced by Russian and foreign manufacturers. The study involved high performance liquid chromatography with UV detection using an Agilent 1260 Infinity II liquid chromatography system with a diode array detector. The following reference standards were used: a diosmin RS, USP grade; a hesperidin CRS, Ph. Eur. Grade; and a diosmin CRS for testing chromatography system suitability for identification of impurities A, B, C, D, E, and F, Ph. Eur. grade.Results: the authors reviewed quality requirements for pharmaceutical products containing diosmin and analysed experimental data obtained during pre- and post-approval testing of Russian and foreign medicines. The comparison of regulatory documents for registered diosmin-containing medicinal products showed a difference in approaches to assessing the contents of related substances and active pharmaceutical ingredients. Having analysed the literature, experimental data and regulatory requirements for standardisation of diosmin-containing pharmaceuticals, the authors recommended an approach to standardisation. According to the approach, concomitant flavonoids (hesperidin, isorchoifolin, linarin, and diosmetin) contributing to the pharmacological activity of a medicinal product are specified as part of Assay, and process-related by-products (impurities A and D) are specified and evaluated as part of Related substances tests.Conclusion: the authors propose to evaluate the contents of concomitant flavonoids (hesperidin, isorchoifolin, linarin, diosmetin) under Assay and to specify impurities A and D, as well as single unidentified impurities and total amount of impurities under Related substances.Π’ настоящСС врСмя сущСствуСт ΠΏΠΎΡ‚Ρ€Π΅Π±Π½ΠΎΡΡ‚ΡŒ Π² ΡƒΠ½ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΊ стандартизации ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² диосмина Π² связи с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ объСма провСдСния рСгистрационной ΠΈ пострСгистрационной экспСртизы ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² этой Π³Ρ€ΡƒΠΏΠΏΡ‹, Π° Ρ‚Π°ΠΊΠΆΠ΅ с Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠΏΠ΅ΠΉΠ½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠΈ Π½Π° ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹ диосмина для ГосударствСнной Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠΏΠ΅ΠΈ Российской Π€Π΅Π΄Π΅Ρ€Π°Ρ†ΠΈΠΈ.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹: ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° ΠΊ стандартизации лСкарствСнных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ², содСрТащих диосмин.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ исслСдования слуТили Π΄Π°Π½Π½Ρ‹Π΅ Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ частныС ΠΌΠΎΠ½ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ Π²Π΅Π΄ΡƒΡ‰ΠΈΡ… Π·Π°Ρ€ΡƒΠ±Π΅ΠΆΠ½Ρ‹Ρ… Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠΏΠ΅ΠΉ. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π° ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ Π½Π° ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² диосмина Π² Ρ„ΠΎΡ€ΠΌΠ΅ Ρ‚Π°Π±Π»Π΅Ρ‚ΠΎΠΊ, ΠΏΠΎΠΊΡ€Ρ‹Ρ‚Ρ‹Ρ… ΠΏΠ»Π΅Π½ΠΎΡ‡Π½ΠΎΠΉ ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΎΠΉ, Π² Π΄ΠΎΠ·ΠΈΡ€ΠΎΠ²ΠΊΠ΅ 500 ΠΈ 1000 ΠΌΠ³, отСчСствСнных ΠΈ Π·Π°Ρ€ΡƒΠ±Π΅ΠΆΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ. ИсслСдованиС осущСствляли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ высокоэффСктивной Тидкостной Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ с Π£Π€-Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π½Π° Тидкостном Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Π΅ Agilent 1260 Infinity II DAD System. Π’ качСствС стандартных ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² использовали диосмин ΠΊΠ²Π°Π»ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ USP RS, гСспСридин ΠΊΠ²Π°Π»ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ EP CRS ΠΈ диосмин для ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠΈ пригодности хроматографичСской систСмы ΠΊΠ²Π°Π»ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ EP CRS для ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ примСсСй A, B, C, D, E ΠΈ F.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ аналитичСский ΠΎΠ±Π·ΠΎΡ€ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ ΠΊ качСству лСкарствСнных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ², содСрТащих диосмин, с Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ…, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π² Ρ…ΠΎΠ΄Π΅ рСгистрационной ΠΈ пострСгистрационной экспСртизы российских ΠΈ Π·Π°Ρ€ΡƒΠ±Π΅ΠΆΠ½Ρ‹Ρ… лСкарствСнных срСдств. Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ зарСгистрированных лСкарствСнных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ², содСрТащих диосмин, ΠΏΠΎΠΊΠ°Π·Π°Π» Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠ΅ Π² ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π°Ρ… ΠΊ ΠΎΡ†Π΅Π½ΠΊΠ΅ содСрТания родствСнных примСсСй ΠΈ Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… вСщСств. Анализ Π΄Π°Π½Π½Ρ‹Ρ… Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹, ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ² Π² области стандартизации, ΠΏΡ€Π΅Π΄ΡŠΡΠ²Π»ΡΠ΅ΠΌΡ‹Ρ… ΠΊ стандартизации ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ², содСрТащих диосмин, позволяСт Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄, согласно ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ ΡΠΎΠΏΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Ρ„Π»Π°Π²ΠΎΠ½ΠΎΠΈΠ΄Ρ‹ (гСспСридин, ΠΈΠ·ΠΎΡ€Ρ…ΠΎΠΉΡ„ΠΎΠ»ΠΈΠ½, Π»ΠΈΠ½Π°Ρ€ΠΈΠ½, диосмСтин), ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ Π²ΠΊΠ»Π°Π΄ Π² фармакологичСскоС дСйствиС ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°, Π½ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π² составС показатСля Β«ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²Π΅Π½Π½ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅Β». ΠŸΡ€ΠΈΠΌΠ΅ΡΠΈ, относящиСся ΠΊ ΠΏΠΎΠ±ΠΎΡ‡Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°ΠΌ ΠΏΡ€ΠΈ производствС диосмина (примСси А ΠΈ D), Π½ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΈ ΠΎΡ†Π΅Π½ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ испытаниях ΠΏΠΎ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŽ «РодствСнныС примСси».Π’Ρ‹Π²ΠΎΠ΄Ρ‹: ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΎΡ†Π΅Π½ΠΊΡƒ содСрТания ΡΠΎΠΏΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Ρ„Π»Π°Π²ΠΎΠ½ΠΎΠΈΠ΄ΠΎΠ² (гСспСридина, ΠΈΠ·ΠΎΡ€Ρ…ΠΎΠΉΡ„ΠΎΠ»ΠΈΠ½Π°, Π»ΠΈΠ½Π°Ρ€ΠΈΠ½Π°, диосмСтина) Π² составС показатСля Β«ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²Π΅Π½Π½ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅Β», примСси А ΠΈ D, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Π΅ Π½Π΅ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ примСси ΠΈ сумму примСсСй Π½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π² ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ «РодствСнныС примСси»

    Introduction

    No full text

    Towards a Biologically Plausible Computational Model of Developmental Learning with Robotic Applications

    No full text
    Building robots that are able to efficiently operate in the real world is a formidable challenge. Functioning in the real world is extremely difficult, because it requires a vast amount of knowledge about the world, specific tasks, and the robot’s own body, as well as the ability to handle unexpected situations. Despite the undoubtable power of modern machine learning approaches and great success in the solving of task-specific problems (especially in controlled environments), such algorithms as supervised and reinforcement learning have significant limitations in real world environments, because they require from the designer either a prepared set of labelled examples of desired behaviours or an adequate reward function. Even having these pre-requisites, the algorithm faces the problem of the greater size of the environment comparing to the agent’s learning abilities. In contrast, humans or animals efficiently gather knowledge of the world during the developmental stage. Children and young animals are intrinsically motivated to use exploration and play to select and learn information about the world that is useful in the future, but also fits into their existing mental schemas and satisfies the physical constraints. According to White, intrinsically motivated learning (also referred to as self-motivated exploratory activity) is responsible for the formation of a wide range of salient competences, from grasping and walking to language. Moreover, this ability to explore and learn for the sake of knowledge typically persists over a lifetime, progressing in complexity and allowing the adaption of the organism’s behaviour to the dynamically changing environment. The current research project aims to apply the developmental learning concept to robotics, taking an approach of building a biologically plausible model of intrinsic motivation. Page ii In particular, we have proposed a theory that explains neurological mechanisms underlying an inverted U-shaped dependence of the activity of deep cortical areas with respect to familiarity of perceived information. We have shown that our model is able to account for recent neuroimaging studies that have not been explained yet. Furthermore, we have linked the neural activity to behavioural response through the feeling of pleasure, showing that the neural activity effectively might be considered as a reinforcement signal that shapes the animal behaviour. We have conducted several computational experiments showing that such behaviour could structure exploration and is beneficial for building a world model in close-to-real world conditions. Finally, we have demonstrated in a simulation that exploration on the periphery of knowledge could lead to an emergence of competences

    Dissociable forms of repetition priming: A computational model

    Get PDF
    Nondeclarative memory and novelty processing in the brain is an actively studied field of neuroscience, and reducing neural activity with repetition of a stimulus (repetition suppression) is a commonly observed phenomenon. Recent findings of an opposite trend specifically, rising activity for unfamiliar stimuliβ€”question the generality of repetition suppression and stir debate over the underlying neural mechanisms. This letter introduces a theory and computational model that extend existing theories and suggests that both trends are, in principle, the rising and falling parts of an inverted U-shaped dependence of activity with respect to stimulus novelty that may naturally emerge in a neural network with Hebbian learning and lateral inhibition. We further demonstrate that the proposed model is sufficient for the simulation of dissociable forms of repetition priming using real-world stimuli. The results of our simulation also suggest that the novelty of stimuli used in neuroscientific research must be assessed in a particularly cautious way. The potential importance of the inverted-U in stimulus processing and its relationship to the acquisition of knowledge and competencies in humans is also discusse
    corecore