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Nondeclarative memory and novelty processing in the brain is an ac-
tively studied field of neuroscience, and reducing neural activity with
repetition of a stimulus (repetition suppression) is a commonly observed
phenomenon. Recent findings of an opposite trend—specifically, rising
activity for unfamiliar stimuli—question the generality of repetition sup-
pression and stir debate over the underlying neural mechanisms. This
letter introduces a theory and computational model that extend existing
theories and suggests that both trends are, in principle, the rising and
falling parts of an inverted U-shaped dependence of activity with respect
to stimulus novelty that may naturally emerge in a neural network with
Hebbian learning and lateral inhibition. We further demonstrate that the
proposed model is sufficient for the simulation of dissociable forms of
repetition priming using real-world stimuli. The results of our simulation
also suggest that the novelty of stimuli used in neuroscientific research
must be assessed in a particularly cautious way. The potential impor-
tance of the inverted-U in stimulus processing and its relationship to the
acquisition of knowledge and competencies in humans is also discussed.

1 Introduction

Repetition priming is a well-studied distinct form of the human and animal
nondeclarative memory (Squire, 2004) that refers to the changing of the
speed and accuracy of the unconscious detection, recognition, and iden-
tification of stimuli or their relative combination, depending on previous
exposure to the object. The priming phenomenon is tied in with the chang-
ing of neural activity in different cortical areas (Gotts, 2003; Schacter, Wig,
& Stevens, 2007; Wig, Grafton, Demos, & Kelley 2005; Wiggs & Martin,
1998; Soldan, Habeck, Gazes, & Stern, 2010; Voss & Paller, 2010; Grill-
Spector, Henson, & Martin, 2006). In particular, there is much evidence that
the repetition of a stimulus (stimulus novelty) triggers changes in neural
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activity in the perirhinal and lateral entorhinal area, while novel temporal
or special arrangement of objects (associative novelty) affects the activity
in the parahippocampal (postrhinal) cortex as well as in the hippocam-
pus (Wan, Aggleton, & Brown, 1999; Eichenbaum, Yonelinas, & Ranganath,
2007; Brown & Aggleton, 2001; Yang, Meckingler, Xu, Zhao, & Weng, 2008).

Despite a large body of the literature published on repetition priming,
the generality of this principle and the underlying neural mechanisms in-
volved are still a matter of debate (Soldan et al., 2010; Schacter et al., 2007).
In particular, the recent finding of dissociable forms of repetition priming
whereby the repetition of unfamiliar items leads to an increase of activa-
tion (Henson, Shallice, & Dolan, 2000) seems to defy the general tenets of
repetition suppression and its proposed mechanisms.

In this letter, we review existing models and their limitations and in-
troduce a new theory that potentially describes the neural mechanisms
involved in dissociable priming. We provide additional support for this
model through the use of computational modeling.

1.1 Models of Repetition Suppression. The most commonly observed
form of neural activity underlying repetition priming is repetition suppres-
sion, whereby neural activity decreases with representation of a stimulus.
Repetition suppression has been reported at a variety of scales: from single
neuron recordings (Miller, Li, & Desimone, 1991; Sobotka & Ringo, 1994)
to EEG (Gruber & Müller, 2002; Voss & Paller, 2010) and fMRI studies
(Demb et al., 1995; Naccache, 2001; Gagnepain et al., 2011). The ubiquity of
observations of repetition suppression has led to the emergence of a few
theories and models that attempt to explain the phenomenon. (For a more
comprehensive review of these models, refer to Grill-Spector et al., 2006.)

Facilitation models (Neely, 1977; Ringo, 1996; Sobotka & Ringo, 1996;
James & Gauthier, 2006; McMahon & Olson, 2007) suggest that fMRI repeti-
tion suppression may occur due to faster processing of well-known stimuli.
That is, when a stimulus is repeated, the corresponding neurons fire with a
shorter delay, but they also settle to the baseline activity more quickly. As
long as fMRI shows an integrated response over a few seconds of activity, a
vigorous but significantly shorter duration of activity causes decreased am-
plitude of the fMRI signal. A rapid response to a stimulus is well correlated
with behavioral increases in processing speed.

According to fatigue models (Anderson, 1976; Miller & Desimone, 1994;
Grill-Spector & Malach, 2001), the decay of activity is because of an equiv-
alent reduction in neural response to repeated presentations of the same
stimulus. That is, the model assumes that there are no spatial or temporal
changes in the neural response pattern. However, as Grill-Spector et al.
(2006) pointed out, this theory does not provide an explanation of how re-
duced firing rates can lead to increased speed and accuracy of processing
familiar stimuli as a key property of repetition priming. In addition, the fa-
tigue model was criticized more recently (Summerfield, Trittschuh, Monti,
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Mesulam, & Egner, 2008) as unable to explain their findings that repetition
suppression also may depend on perceptual expectations.

Another class of models suggests that the sharpening of information
representation in the cortex is the main reason for observed repetition sup-
pression (Desimone, 1996; Wiggs & Martin, 1998). According to this theory,
if a stimulus is novel for the brain, a relatively large number of neurons
respond weakly to it, which leads to the high overall activation registered
on the population of neurons. However, with repeated exposure, the neu-
ral response becomes sharper with fewer neurons firing (but with higher
intensity), leading to an overall reduction in activation.

The sharpening theory is supported by several neurological experiments.
For example, Rolls, Baylis, Hasselmo, and Nalwa (1989), Li, Miller, and
Desimone (1993), and Kobatake, Wang, and Tanaka (1998) have found en-
hanced stimulus selectivity in the monkey inferotemporal cortex following
stimuli repetition, and Rainer and Miller (2000) showed that familiar visual
objects activated fewer but more sharply tuned neurons in the prefrontal
cortex compared to novel objects.

A few computational models explore and demonstrate the sharpening
of representations with repeated exposure to stimuli. For example, the
model of complementary learning systems (Atallah, Frank, & O’Reilly, 2004;
O’Reilly, Bhattacharyya, Howard, & Ketz, 2011), employs a competitive
Hebbian learning algorithm that demonstrates cortical activation sharpen-
ing after repeated presentation of a stimulus. This algorithm relies on a
simulated lateral inhibition mechanism in which strong neurons actively
inhibit weaker ones. In the case of an unfamiliar stimulus, many neurons
are allowed to fire due to a lack of lateral inhibition. Similarly, Moldaka-
rimov, Bazhenov, and Sejnowski (2010) presented a computational model
based on a simplified but biologically plausible spiking neural network of
the early visual processing areas (V1,V2, and V4) that provides evidence
that the sharpening effect may occur due to an interplay between Hebbian
learning and lateral inhibition.

1.2 Dissociable Forms of Repetition Priming. The theories presented
in the previous section are aimed at explaining decreases in neural activity
with repetition of a stimulus. However, these theories seem to be unable to
account for the phenomenon of repetition enhancement. That is, a number
of studies show an opposite trend: in some cases, neural activity rises with
the increasing familiarity of a stimulus.

Potentially, the difference between repetition suppression and enhance-
ment (i.e., dissociable priming) may be explained in terms of an inverted
U-shape response with respect to stimulus familiarity. That is, converging
evidence suggests that the repetition of unfamiliar items will lead to an
increase in activation, whereas repetition of familiar items will yield a de-
crease (i.e., dissociable priming); that is, moderate levels of familiarity will
result in the largest neural response, with highly unfamiliar or familiar items
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having less of a response. For instance, Henson et al. (2000) has shown that
the repetition of truly unfamiliar visual stimuli, such as unfamiliar faces and
symbols, could lead to an increase in neural activity in the right fusiform
region measured as an fMRI signal, while repeated exposure to familiar
stimuli elicits decaying activity. Similarly, Soldan, Gazes, Hilton, and Stern
(2008) have registered repetition enhancement in the occipital-temporal cor-
tex related to the repetition of unfamiliar stimuli and decreases in neural
activity for familiar stimuli. A study by Fiebach, Gruber, and Supp (2005)
presented similar EEG results showing dissociable trends for the repetition
of familiar words versus unfamiliar pseudowords.

Numerous other studies also demonstrate that moderate levels of nov-
elty yield the largest neural response, possibly an inverted U-shaped de-
pendence with respect to familiarity. In the hippocampus and surrounding
medial temporal lobe (MTL) cortices, this effect is often found related to
“expectation violations” in which both novel (i.e., random) and familiar se-
quences of spatial or temporal patterns yield a low neural response, whereas
patterns that explicitly violate known expectations lead to a large response
(associative novelty). For example, Yang et al. (2008) provided evidence
based on fMRI human research where the right parahippocampal cortex
showed increased activation for unexpected stimulus pairs. Schott et al.
(2004) and, independently, Düzel, Habib, Guderian, and Heinze (2004) pre-
sented results where participants distinguished between familiar and novel
configurations of pairs of items. The results show that the activation of the
rhinal cortex (as well as of the hippocampus) rises with increasing novelty
of stimuli from highly familiar to partially novel. Similarly, Hunkin, Mayes,
and Gregory (2002) have demonstrated that the activity of the posterior cin-
gulate cortex rises when subjects hear a novel combination of word triplets.
Finally, Kumaran and Maguire (2007) report that hippocampal neurons
increase their baseline firing in response to a novel stimuli rearrangement.

In summary, evidence suggests that both neural enhancement and sup-
pression can be expected with stimuli repetition, depending on the famil-
iarity of the stimuli, following an inverted U-shaped trend.

1.3 Modeling the Inverted U-Shaped Response. It seems that to date,
there is a lack of models that explicitly attempt to describe dissociable
forms of repetition priming. Henson et al. (2000) speculate that repeti-
tion enhancement may be due to “the formation of new representations”
(p. 1272) that occur with exposure to novel stimuli; however, they suggested
no concrete neural mechanisms underlying the phenomenon.

In the following sections, we introduce a theory of how the inverted-U
may emerge in cortical layers through an interplay between Hebbian learn-
ing and lateral inhibition. We then implement this theory in a spiking neural
network, and demonstrate the emergence of this inverted-U with respect
to varying levels of familiarity. Then we introduce a more sophisticated
model of a cortical layer and replicate the dissociable priming effects that
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Henson et al. (2000) found using real-world stimuli. A general discussion
and implications for future research conclude the letter.

2 Cortical Processes Potentially Underlying
the Inverted U-Shaped Curve

Henson et al. (2000) have demonstrated two dissociable trends in novelty
processing by the brain. One process is the well-known form of repetition
priming, namely, repetition suppression. It occurs when the brain repeat-
edly observes a familiar stimulus and is characterized by decreased neural
response over sequential representations. We believe that the sharpening
theory (Desimone, 1996; Wiggs & Martin, 1998) accounts for the repetition
suppression, whereby neurons “drop out” of the representation with in-
creased familiarity. Similar to O’Reilly (1996) and Biederman and Vessel
(2006), we believe that lateral inhibition may play a key role in explaining
this sharpening, whereby the strong neurons suppress the weaker.

The second process Henson and colleagues found is repetition enhance-
ment that occurs when a truly unfamiliar stimulus is repeatedly shown.
As neurons can be viewed as pattern detectors, we assert that true novelty
exists when there are no neurons that strongly encode the stimulus itself.
We believe that in this case, the initial neural response will be low, because
there will be a low probability of neurons firing to the small partial match
(see Figure 1A). However, with repetition of the stimulus, its representation
in the brain begins to form due to Hebbian learning. That is, with exposure,
the probability that neurons will fire will increase over time, giving rise to
increased activity (see Figure 1B). This represents the intermediate level of
familiarity condition.

Finally, repeated exposure, Hebbian learning further strengthens neural
connections, making the recipient neurons respond more actively. However,
via lateral connections, this will trigger inhibitory neurons that can suppress
weaker units and reduce overall activation (see Figure 1C), which represents
a well-known stimulus.

Before describing the simulation of dissociable forms of repetition prim-
ing, we introduce a model of a cortical layer based on our theory. We
empirically confirm that the proposed model exhibits both sharpening of
representation and initial rising of network activity due to a process similar
to Hebbian learning, demonstrating an inverted U-shaped dependence of
the network activity with respect to the novelty of stimuli.

2.1 A Spiking Neural Network with Hebbian Learning and Lateral
Inhibition. The purpose of the simulation is to empirically examine
whether interplay between Hebbian learning and lateral inhibition can
exhibit an inverted U-shaped dependence of its activity with respect to
stimulus familiarity.
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Figure 1: The proposed neural mechanism forms an inverted U-shaped re-
sponse to novelty. Circles represent excitatory neurons, and squares represent
inhibitory neurons. Not all connections are shown for simplicity. The bars
at the right show overall layer activity and, thus, expected fMRI response.
(A) Unfamiliar stimuli weakly activate a range of neurons. (B) With subsequent
repetition, Hebbian learning strengthens these responses, giving rise to a higher
activation level. (C) Further learning leads to triggering the inhibitory neu-
rons, suppresses weaker units, leading to sparsification and decreased neural
activation.

The simulation network has two sublayers: an input layer that contains
a single node and an output layer consisting of 5000 excitatory and 1000
inhibitory units (see Figure 2). The single input node was used to represent
a single stimulus, with increased exposure modifying the initially weak
connections to the output layer, through Hebbian learning. This simplifi-
cation is feasible because the firing of the excitatory neurons depends on
their net input, making the resulting activity independent of the process of
the summation of dendritic signals (meaning that a more complex stimulus
pattern is not required in our case).
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Figure 2: Layout of the spiking neural network with lateral inhibition used in
the experiment. The sublayer of the only stimulus neuron is fully connected to
the sublayer of the excitatory neurons. The inhibitory neurons are reciprocally
fully connected to the excitatory units.

The layout of the network reflects the structure of the cortex, where lat-
eral inhibition is derived through connections with intermediate inhibitory
interneurons (Gibson, Beierlein, & Connors, 1999). Full connections exist
between the input unit and the excitatory neurons (initialized to small, ran-
dom weights denoting initially low familiarity of the stimulus), as well as
reciprocal connections between the excitatory and inhibitory units that are
not plastic and have fixed and relatively strong weights. It is known that
about 20% of neurons in the cortex are inhibitory interneurons (Beaulieu,
Kisvarday, Somogyi, Cynader, & Cowey, 1992), with our simulation using
the same ratio of excitatory to inhibitory neurons.

The stimulus neuron is firing at a constant rate of 10 spikes per sec-
ond. Over time, Hebbian learning strengthens the connection between the
stimulus and excitatory units, representing an increase in familiarity to this
pattern. We record the average firing rate of the output sublayer (both in-
hibitory and excitatory neurons) to measure the activation levels that may
be captured by fMRI studies.

‘

2.1.1 Spiking Neurons and Hebbian Learning. In this experiment we are
using a biologically plausible spiking neuron model suggested by O’Reilly
and Munakata (2000). The neurons are of the two-compartment integrate-
and-fire type, meaning that when a pulse is received as an input signal,
the membrane potential increases slowly over time (first flowing through
the dendritic compartment and then into the soma), leading to an action
potential being fired sometime later if the membrane potential exceeds a
threshold.
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Figure 3: The distribution of neurons’ firing with time for three situations: the
stimulus is novel (distribution A), partially learned (distribution B), and well
learned (distribution C), when the lateral inhibition is turned off. The graph
depicts both the number of neurons responding and their latency (temporal
distance from the discharge of the input neuron).

Importantly, the inhibitory neurons in the experiment are faster than
excitatory neurons, reflecting the dynamics of the brain (Somogyi, Tamás,
Lujan, & Buhl, 1998). The connections between the stimulus neuron and
excitatory neurons are able to learn, representing the growing familiarity of
the input stimulus. The learning is implemented as a form of spike-timing-
dependent plasticity, Hebbian learning, following the general theory that
neurons that fire together should strengthen their connectivity and other-
wise weaken (Gerstner & Kistler, 2002). The appendix provides a detailed
description of the models and parameters used in the simulation.

2.1.2 Results. At the beginning of training, when a stimulus is novel
for the network, the connection weights between the stimulus and output
excitatory neurons are weak. As a result, only a few neurons receive over-
threshold net input and fire. Due to a small amount of random noise that
is added to the net input of each unit, even units that receive subthresh-
old activation could occasionally fire with low probability. Thus, a wide
range of neurons can be strengthened through Hebbian learning, increas-
ing the population of firing neurons. Over time, more and more neurons
start firing, increasing the overall activity. Figure 3 illustrates the changes in
the neural activity when the lateral inhibition is temporarily switched off.
Distribution A represents the neural activity (the number of neurons firing
with respect to their latency behind the stimuli neuron) when a stimulus is
new to the network, distribution B when the stimulus is partially learned,
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Figure 4: Distribution of the neurons’ activity with (solid line) and without
(dashed line) lateral inhibition for a well-learned stimulus. Inhibitory neurons
cut off the right (latest) part of the distribution, thus reducing overall activation
(the effect of sharpening of representation).

and distribution C when the stimulus is well learned by the network.
Figure 3 clearly illustrates the increasing nature of activation with respect
to familiarity when learning is governed purely by Hebbian mechanisms.

An interesting phenomenon displayed by this model is that not only does
the general population increase in activity with learning, but the time delay
for neurons to fire also decreases with familiarity. That is, the better a neuron
encodes a stimulus, the faster it will be in responding to it. This temporal
dependence is well supported by empirical data (Sobotka & Ringo, 1996;
James & Gauthier, 2006; Balu, Larimer, & Strowbridge, 2004).

Figure 4 shows the condition when lateral inhibition is implemented
in the network. As can be seen, the faster, winning neurons activate the
inhibitory neurons, which suppress the slower, losing neurons, cutting off
the right part of the distribution and thus resulting in decay of activity.

When the pieces are added together, the results demonstrate that the
activity of the network is low for an unfamiliar stimulus because only a few
neurons fire, mostly due to their stochastic nature. When a stimulus becomes
partially familiar, a large population of excitatory neurons is activated, but
because of the weak connections, they fire with a significant time delay. At
this time, more activation is spread to the reciprocally connected inhibitory
units that also start increasing in population. However, due to a large firing
time delay, the inhibitory neurons are unable to affect the overall activity.
The situation changes when a stimulus is well known to the network. The
strong synaptic connections guarantee a short firing delay, and thus the
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Figure 5: The inverted U-shaped function emerged in the biologically plausible
simulation of a spiking neural network with lateral inhibition and Hebbian
learning.

inhibitory neurons increase their control over the excitatory units, result-
ing in decreasing overall activation. Figure 5 shows the resulting inverted
U-shaped curve of the relative network activity with learning.

2.1.3 Discussion. The simulation results confirm that the neural activity
of a spiking neural network with Hebbian learning and lateral inhibition
could naturally exhibit an inverted U-shaped dependence with respect to
stimulus novelty. Indeed, the initial increase of the firing neuron population
due to the stochastic nature of neurons and Hebbian learning provides the
rising activity while forming representations of unfamiliar stimuli. There-
after, with continuing learning of partially familiar stimuli, the sharpening
effect takes over, and the overall layer activity starts to decrease.

2.2 A Restricted Boltzmann Machine with Explicit Lateral Inhibition.
In the previous experiment, we showed that the neural activity of a spik-
ing network with Hebbian learning and lateral inhibition could naturally
follow an inverted-U shaped function with respect to the novelty of input
stimuli, providing both rising activity for unfamiliar stimuli and decaying
activity for familiar stimuli. However, replicating neurological experiments
requires using complex network structures and real-world input stimuli,
thus introducing limitations in the use of spiking networks that are compu-
tationally expensive and involve fine-tuning a large number of interrelated
parameters. To overcome these limitations, in this section we introduce
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a robust and efficient rate-coded neural network model that applies the
main characteristics of our theory to a restricted Boltzmann machine (RBM)
(Smolensky, 1986; Hinton, 2002, 2010).

RBMs and their variations have been well studied over the past decade
and have been shown to be very efficient in many classification, recognition,
and dimensionality-reduction tasks (Tieleman, 2008; Nair & Hinton, 2010;
Ranzato, Krizhevsky, & Hinton, 2010; Luo, Shen, & Niu, 2010).

Generally an RBM is a network of visible and hidden units that are
bidirectionally connected to each other. The units make stochastic deci-
sions about whether to be “on” or “off” depending on their net input. The
probability of turning the unit on is:

p(h j = 1) = 1
1 + e−z j , (2.1)

z j = b j +
∑

i
vi · wi j, (2.2)

where wij is the weight of the connection between the ith visible and jth
hidden units.

This type of network can be trained to extract statistical regularities from
input samples by minimizing the joint energy of visible and hidden units,
where the gradient is calculated as

�wi j = 〈
vih j

〉data − 〈
vih j

〉equilibrium
. (2.3)

In this equation, 〈〉data denotes the expected value of the input multi-
plied with the inferred hidden states while the input is clamped on the
data points, and 〈〉equilibrium is the expectation of vih j when the alternating
Gibbs sampling of the hidden and visible units was (infinitely) iterated
to get samples from the equilibrium distribution (see Hinton, 2002, for
details).

For training the model, we use a simple and computationally efficient
algorithm that approximates the gradient: the contrastive divergence (CD)
algorithm (Hinton, 2002). In brief, the calculation of the weights’ gradients
consists of two phases. First, at a positive phase, the state of the hidden units
hdata

j is calculated according to equation 2.1. Then a negative phase starts,
and the “fantasy,” which is the “believed” input value vrecon

i , is reconstructed
back given the state of the hidden units and symmetrical weights. This
is followed by the calculation of the negative-phase hidden units’ state
hrecon

j given vrecon
i . Instead of taking the infinite number of Gibbs sampling

iteration, the chain stops after the first loop. The difference between these
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two phases is used in the weights’ and biases’ update:

�wi j =
〈
vih j

〉data − 〈
vih j

〉recon
,

�bi =
〈
vi

〉data − 〈
vi

〉recon
,

�c j =
〈
h j

〉data − 〈
h j

〉recon
. (2.4)

A more detailed description of the prototypical RBM implementation, in-
cluding Matlab code examples, can be found in Hinton and Salakhutdinov
(2006).

In addition to the prototypical RBM, our implementation explicitly im-
poses lateral inhibition, which is essential for representation sharpening.
This is achieved through incorporating a fuzzy variation of the k-winners-
take-all algorithm, suggested by O’Reilly and Munakata (2000), where only
a set number of units (k) is permitted to become active:

prob(si = 1) = αi
1

1 + e−zi
, (2.5)

where

zi = x jwi j,

αi =
{

1, f or the f irst kwta units with the strongest net input zi

0, f or all other units
.

The vector αi is obtained during a positive phase, and the same vector is
also used to mask the activity of hidden units during the negative phase of
the CD algorithm.

The proportion of allowed winners kwta is not fixed in our model. Instead,
as in the previous simulation, the value of k is determined by the strength
of the winning units, with k decreasing as the winners become stronger:

kwta = k0 + kadd, (2.6)

kadd = ε

1 + e−γC
, (2.7)

C =
(

1 − Kav

Kexp

)
− β, (2.8)

where k0 = 0.1, β = 0.25, ε = 1 − k0, and γ = 10. The average activation
Kav is the mean value of the net input of the k winning units among the
hidden layer Kav = ‖αizi‖. The expected activation of the winning units
Kexp is calculated as the running average of Kav: Kt+1

exp = (1 − θ ) · Kt
exp + θ ·



724 K. Makukhin and S. Bolland

784 Input Units
( random
sparse  
binary 
vector )

200 Hidden Units
RBM lat. inhibition

784 Input Units
(28 x 28 pixels)

200 Hidden Units
RBM lat. inhibition

Trial A Trial B

Figure 6: The experiment setup. A modified RBM with explicit lateral inhibition
has 784 visible (input) and 200 hidden units. For trial A, randomly generated
sparse binary vectors are used as stimuli. For trial B, images from the MNIST
data set are presented to the input layer. The activation of the hidden layer is
recorded while the learning occurs.

Kav, where θ = 10−3. When the net input is low, kwta is high, and the average
activation can grow freely. However, when the internal representation of a
stimulus has formed, the net input rises and kwta becomes smaller, which
leads to reduced the average activity. This mechanism plays the role of
lateral inhibition, and the parameter kwta is effectively an analog of the time
delay in spiking networks. The average activation of the network in the
model is measured as the sum of the probabilities for the kwta winning
hidden units to be turned on.

The following section describes an implementation of this model, where
we evaluated the effect of familiarity on neural activation given real-world
stimuli.

2.2.1 Experiment. The aim of this experiment was to explore the capabil-
ity of the system to exhibit an inverted-U shape of neural activation with
respect to familiarity on complex (and real-world) patterns, in contrast to
the single node representation used for the previous simulation.

The network layout is depicted in Figure 6. To explore generality, the ex-
periment consisted of two versions of stimuli. The first trial of the system (A)
used randomly generated patterns of 1s and 0s with the sparsity about 0.1,1

while the second trial (B) used meaningful real-life data, specifically, images
of handwritten characters from the MNIST data set (LeCun & Cortes, 1998).

In both trials, the model consisted of a modified RBM with lateral in-
hibition with 784 input (visible) and 200 hidden units. The model was

1The sparsity of stimuli must be low to overcome the limitations of a simple binary
RBM as discussed by Tang and Sutskever (2011).
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pretrained before trials on two patterns that allowed filling the network
weights and parameters with initial “knowledge,” thus, minimising the
influence of random initialization.2

During the experiment, the patterns already known by the network were
interleaved with a new test pattern (to mimic the more natural occurrence
of repetition effects that exist even when the repetitions are temporally
segregated), while the average activation of the network (the sum of proba-
bilities) was recorded. The model was trained for 60 iterations by using the
contrastive divergence algorithm with a learning rate of 0.002.

2.2.2 Results. Both trials demonstrated similar trends; Figure 7 summa-
rizes the results. Figure 7B shows the average probability of the state among
the 10% most active units increases with the learning of an unfamiliar pat-
tern and approaches one, while the reconstruction error is decaying (see
Figure 7A). At the same time, the winning probabilities for already familiar
patterns stay high—close to one (the large-dashed and fine-dashed lines,
mostly overlap each other).

2.2.3 Discussion. Consistent with our expectations, the normalized ac-
tivation of the hidden units, measured as the sum of all the probabilities
divided by the number of units, follows an inverted U-shaped curve with
respect to growing familiarity (see Figure 7C). The same trend is demon-
strated in both trials.

In the following section, we extend the experiment described with a
preprocessing deep network to demonstrate that our model can simulate
dissociable forms of repetition priming using real-world data, closely repli-
cating the design and results found in the experiment that Henson et al.
(2000) conducted.

3 Dissociable Forms of Repetition Priming

The following section describes a computational experiment that replicates
the findings of Henson et al. (2000). The experiment uses the same design
as the original study: in two separate trials, either photographs of famous
faces (or meaningful symbols) or photographs of nonfamous faces (or mean-
ingless symbols) were repeatedly presented to subjects, and the changes in
neural activity were recorded.

3.1 Preprocessing Layers. The real cortex has a hierarchical structure
that permits a higher degree of generalization than a single layer. For

2At trial B, we used five instances of a particular character (chosen randomly at the
beginning of test) instead of patterns to evaluate the robustness of the model to small
variations of stimuli.
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Figure 7: The process of learning a novel stimulus by the proposed model.
(A) Reduction of the reconstruction error. (B) Average probabilities to be turned
on of 10% winning units given the data. (C) The normalized layer activity of
the model network with respect to learning (level of familiarity). The curves for
stimulus 1 and 2 mostly overlap.

example, in the ventral visual pathway, superficial cells respond to local
specific features, such as bars and edges, whereas in the higher layers, cells
respond to complex shapes and objects with a higher degree of invariance
(Palmer, 1999). We believe that the ability to generalize is an important prop-
erty that must be a part of the simulation in order to successfully replicate
experiments in which real-world stimuli are used as an input. For example,
the repetition suppression effect should exist even when the stimulus is a
variant of the original, such as a given celebrity in a different pose.

In order to provide a generalized representation of real-world input
stimuli in the simulation, we added a preprocessing module that consists
of a deep belief network (DBN) (see Figure 8), identical to the network used
in Hinton, Osindero, and Teh (2006). The DBN was separately pretrained
before the experiment on a large data set of images (the same data set that is
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inhibition

Figure 8: The layout of the network used in the experiment. (Left) A deep belief
network (Hinton et al., 2006). (Right) A model of a cortical layer comprising a
modified RBM with explicit lateral inhibition.

used in the main experiment—MNIST data set; LeCun & Cortes, 1998) and
was kept unchanged during the experiment. We emphasize that the DBN
here simply converts realistic visual stimuli (i.e., handwritten characters)
to a wide generalized representation (features) that is used as input to the
model of a cortical layer. Thus, the DBN might be replaced by another
algorithm that is capable of forming such a representation.

The DBN consisted of an input layer of 784 visible units and three hidden
layers of 500, 500, and 2000 units. It was trained one layer at a time with
the contrastive divergence algorithm (Hinton, 2002) without fine tuning by
backpropagation. Features extracted at the last hidden layer are used as an
input vector for the model of a cortical layer.

3.2 Stimuli. Like the human brain studies, the simulation uses real-
world stimuli analogous to the pictures of symbols, objects, and faces com-
monly used in fMRI and single-cell recording studies. Specifically, we used
100 random instances of ten handwritten characters randomly chosen from
the MNIST data set (LeCun & Cortes, 1998; see the examples in Figure 9).

3.3 Experiment and Results. In order to explore dissociable forms of
repetition priming, training of the network on the test character occurred
under two conditions: when it had a low and a high level of current famil-
iarity. In the “unfamiliar stimulus” condition, the model of a cortical layer
was pretrained on the images of handwritten digits from 0 to 9 except for
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Figure 9: An example of the instances of handwritten characters 2 and 6 from
the MNIST data set used in the experiment.
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Figure 10: The simulation of dissociable forms of repetition priming. The plots
depict changing in the model neural activity with learning (that represents rising
stimulus familiarity). (A) The neural activity rises with repetition of an unfa-
miliar stimulus (repetition enhancement). (B) Decaying activity with repeated
exposition to a familiar stimulus (repetition suppression).

one test digit. The layer is then trained for the test digit interleaving with
random instances of all other characters for five epochs (exploring the effect
of learning on an unfamiliar stimulus), with the dependent variable being
the “activity” of the cortical layer. The results are shown in Figure 10A,
where the relative neural activity is calculated as the sum of the probabil-
ities of output units in the model of a cortical layer to be “on” divided by
the number of the output units.

In the “familiar stimulus” condition, by contrast, the network was trained
for a new instance of a familiar character. This condition is analogous to
the conditions in fMRI studies when a picture of a familiar symbol or a
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famous celebrity face photograph was used: subjects will be able to rec-
ognize the content of the image although they may never have seen the
exact image before. The results are depicted in Figure 10B. Both experi-
ments are repeated 10 times with using different digit for each simulation
for cross-validation.

4 Discussion

There seems to be converging evidence to suggest an inverted-U type func-
tion of neural activation with growing stimulus familiarity. Specifically,
novel and familiar stimuli induce different types of response in neural ac-
tivity with repeated stimulus exposure, and intermediate levels of novelty
(such as that found in expectation violations) seem to yield the highest
neural response. To date, however, in the priming literature, there has been
little discussion about the mechanisms underlying this trend.

In this letter, we have examined a theory and associated computational
model that could offer an explanation to the neural mechanisms underlying
dissociable forms of repetition priming, as well as how the activity of cortical
structures generally may depend on novelty. First, we have shown through
a computer simulation that a simple model of a spiking neural network
with Hebbian learning and lateral inhibition may naturally demonstrate
both rising activity with learning unfamiliar stimuli and sharpening of the
representation with repetition of familiar stimuli. We then explored how
this mechanism may account for dissociable priming effects in experiments
that use real-world data.

We have shown that in conditions similar to the neuroscientific study
by Henson et al. (2000), the model is able to naturally demonstrate similar
results: repetition suppression for familiar stimuli and repetition enhance-
ment for novel stimuli. Specifically we argue that in accordance with the
sharpening theory (Desimone, 1996; Wiggs & Martin, 1998), the decline
of neural activity with familiar stimuli repetition seems to be caused by
lateral inhibition. Indeed, on repeated exposure, neural connections are
strengthening due to Hebbian learning, but the strongest neurons inhibit
the weaker ones. Hence, the neural representations become sparser, which
could be registered as declining activity on an fMRI signal.

A similar process appears able to explain the rising activation for un-
familiar objects. Hebbian learning tends to increase the initially negligible
accidental response of the stimulus-specific population of neurons, thus
raising the fMRI signal until lateral inhibition starts affecting the popula-
tion of neurons.

It is widely accepted that there are at least two complementary mecha-
nisms for long-term memory, where neocortical contributions are respon-
sible for memorizing generalized nondeclarative concepts (e.g., “Where is
the best place to put my car keys?”), while remembering specific facts and
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events (e.g., “Where did I put my car keys today?”) is processed by the me-
dial temporal lobe, including the hippocampus and surrounding cortical
structures (Squire, 2004; Atallah et al., 2004; O’Reilly et al., 2011). The theory
and model presented in this letter are aimed at replicating dissociable forms
of repetition priming observed in the fusiform and occipital-temporal cor-
tices, but we speculate that the inverted U-shaped dependence of neural
activity with respect to the novelty of observed data could be a more general
property of the cortex, including deep structures, such as the rhinal, infe-
rior temporal, parahippocampal cortices, and, arguably, the hippocampus.
That is, similar mechanisms may explain raised neural activation in the hip-
pocampus during expectation violations (coinciding with moderate levels
of familiarity, where there is only a partial match to preexisting knowledge
and expectancies).

The phenomenon of repetition priming seems to be a multifaceted com-
plex process that possibly involves multiple mechanisms. For example,
Summerfield et al. (2008) showed that repetition suppression, measured
as an fMRI signal in the fusiform face area of the human brain, could
be a consequence of a perceptional top-down process that reflects a re-
duction in prediction error when the brain processes expected stimulus.
Recently, Larsson and Smith (2012) provided additional evidence for the
existence of different mechanisms of repetition suppression. They showed
that in most visual areas, repetition suppression reflects a combination of
perceptual expectation and neural adaptation. However, such theories are
highly consistent with our own. That is, similar to expectation violations
in the hippocampus, top-down expectations may strengthen the activation
of winning neurons, increasing the lateral inhibition of the weaker units,
leading to sparser representations.

4.1 Further Implications. While our model has some algorithmic sim-
ilarity to the implementation of the Leabra system (O’Reilly & Munakata,
2000) and its further extension, the complementary learning system (CLS)
(O’Reilly et al., 2011), the current research is focused on different goals.
In contrast to the CLS, which offers a model of the operation of the MTL
memory system, our model explores fundamental neural mechanisms that
may be present in various memory areas, giving rise to an inverted-U shape
function of neural activation with respect to familiarity.

Interestingly, as explored by Biederman and Vessel (2006), many of the
areas that exhibit repetition effects also seem to encode perceived pleasure.
That is, the density of μ-opioid receptors is highest in higher levels of the
cortex and brain structures such as the parahippocampal cortex. From this
perspective, the existence of the inverted-U that we hypothesize in this letter
is further supported by behavioral experiments that demonstrate similar
trends for perceived pleasure and liking with varying levels of familiarity
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(Brennan, Ames, & Moore, 1966; Karmel, 1969; Heyduk, 1975; Williams,
1987; Imamoglu, 2000; Lévy, MacRae, & Köster, 2006).

The link of familiarity to perceived pleasure has implications for theories
of intrinsic motivation. Interestingly, in the field of developmental robotics,
it has been widely assumed that exploring on the periphery of knowledge
is a preferred strategy for the gaining of competence (Oudeyer, Kaplan, &
Hafner, 2007; Kaplan & Oudeyer, 2007; Ryan & Deci, 2000; Schmidhuber,
2010). Specifically, if an organism spends time exploring familiar parts of
its world, little new knowledge can be gained. Similarly, exploring totally
unfamiliar contingencies is problematic in that the contingencies might be
purely random (such as trying to predict the next car exiting a tunnel) or
may not be easily integrated into current mental models (e.g., integrating
a location into a poorly formed map of the world). Instead, exploring new
knowledge that extends the old drives the organism to effectively expand
its mental models and gain competencies central to survival. Thus, perhaps
the inverted-U shape that we have been exploring in this letter and that
found in the repetition priming literature is a fundamentally important
signal used for shaping effective behavior.

Currently, there is little synergy between these research areas that may be
fundamentally exploring the same mechanisms. For example, few papers in
the area of repetition suppression explore the potential utility of the signal
generated, and few papers in developmental robotics take a close look at
the biology involved in generating intrinsic reward signals. It is evident
that further exploration of these cross-connections is warranted.

5 Conclusion

In this letter, we have presented a computational model that extends the
sharpening theory with concrete algorithms and have demonstrated that
lateral inhibition in combination with Hebbian learning could provide a suf-
ficient mechanism that accounts for both repetition suppression for familiar
stimuli and repetition enhancement for novel stimuli. Moreover, according
to our model, the two forms of priming could be due to the rising and
falling parts of an inverted U-shape function with respect to the familiarity
of the stimulus.

The preliminary results of this study contribute to our understanding of
novelty processing in the brain and raise important questions for further
investigation. Specifically, it is suggested that the full inverted U-shape of
neural activity could be shown in fMRI study if the novelty of stimuli could
be gradually changed from truly novel to familiar. It is also suggested that
the neuroscientific community must take special care to choose novel and
familiar stimuli for neurological experiments and that a better integration
of disciplines that explore the mechanisms and utility of this signal be
explored.
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Appendix: The Neuron Model and Hebbian Learning Algorithm

A.1 Neuron Model. A biologically plausible neuron model (O’Reilly
& Munakata, 2000) was used for the spiking network experiment. Specif-
ically, the model assumes that most of the activation work in a neuron is
performed by an excitatory synaptic input channel (formed by Na+ current),
inhibitory synaptic input channel (Cl− current) and always-open leak chan-
nel (K+ current). Thus, the total current for the neuron is defined by

Inet = Ie + Ii + Il = ge (t) Ge

(
Vm (t) − Ee

)
+ gi (t) Gi

(
Vm (t) − Ei

) + gl (t)
(
Vm (t) − El

)
, (A.1)

where g∗(t) is the fraction of the total number of channels that are open
at a time t for the excitatory, inhibitory, and leakage channels, and G∗ is
a maximum conductance of the channel. Thus, the membrane potential is
defined by

dVm

dt
= DvmInet = Dvm[ge (t) Ge

(
Vm (t) − Ee

)
+ gi (t) Gi

(
Vm (t) − Ei

) + gl (t)
(
Vm (t) − El

)
], (A.2)

where Dvm is a time constant that reflects the capacity of the membrane.
The conductance of the excitatory channel follows the kinetics:

dge

dt
= −Dnetge (t) + Dnet

(
Ie + Irand

)
, (A.3)

where Ie is an averaged input excitatory current and Irand is added gaussian
noise with mean 0 and standard deviation 2 mV.

Similarly, the conductance of the inhibitory channel is described by

dgi

dt
= −Dnetgi (t) + Dnet

(
Ii + Irand

)
. (A.4)

The leakage current in the model is time independent, so its conductance is
given by gl (t) = 1.

The parameters used in the simulation reflect the real neuron dynamics
(O’Reilly & Munakata, 2000). In particular, the neurons fire when the mem-
brane potential reaches a threshold of θ = −55 mV. When a neuron fires,
the membrane potential resets to a resting potential value Vrest = −70 mV,
and the conductances are reset to zero.

Consistent with neurobiology, the inhibitory neurons in the model are
faster to fire compared to the excitatory neurons (Somogyi et al., 1998). This
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Table 1: Parameters of the Neuron Model Used in the Simulation (Dimension
mV).

Parameter mV Normalized Value

Resting potential Vrest −70 0.15
Firing threshold θ −55 0.25
Excitatory (Na+) channel equilibrium potential Ee +55 1.00
Inhibitory (Cl−) channel equilibrium potential Ei −70 0.15
Leakage (K+, Na+) channel equilibrium potential El −70 0.15

Table 2: Parameters of the Neuron Model Used in the Simulation (Dimension-
less).

Parameter Value

Maximum conductance for excitatory channel Ge 1.0
Maximum conductance for inhibitory channel Gi 1.0
Maximum conductance for leakage channel Gl 0.1
Membrane potential time constant, excitatory neuron Dvm 0.14
Membrane potential time constant, inhibitory neuron Dvm 0.02
Conductance time constant, excitatory neuron Dnet 0.49
Conductance time constant, inhibitory neuron Dnet 0.07

is achieved using a smaller conductance time constant for the inhibitory
neurons. The parameters of the neuron model are listed in Tables 1 and 2.

A.2 Hebbian Learning. To simplify our experiment, all excitatory neu-
rons are initially connected to the input stimulus neuron using small ran-
dom weights to emulate the initial unfamiliarity with the input pattern. The
single stimulus neuron is firing at a constant rate of 10 spikes per second, a
reasonable spiking rate for regular spiking excitatory neurons found in the
cortex (Izhikevich, 2004).

The connections between the input stimulus neuron and excitatory neu-
rons are modified according to an algorithm proposed by Gerstner and
Kistler (2002) (Hebbian learning):

�w = A0 +
⎧⎨
⎩

A+e
− s

τ+ , s ≥ 0

−A−e
s

τ− , s < 0
, (A.5)

where s = tpost − tpre is a time delay between pre- and postsynaptic firings;
A0 = −0.05 is an activity independent constant that represents a slow de-
crease of the weights over time; τ+, τ− = 20 ms, and A+, A− = 1. The initial
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weights are set to a value 4.3, which yields a subthreshold activation of the
neurons.

The simulation time step 0.2 ms is chosen to provide a finely grained
resolution in order to capture the neuron dynamics. Every learning iteration
corresponds to the simulation time frame of 100 ms, which is long enough
for the neurons to fire and return to their resting state.
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