4,353 research outputs found
Damped Topological Magnons in the Kagom\'{e}-Lattice Ferromagnets
We demonstrate that interactions can substantially undermine the
free-particle description of magnons in ferromagnets on geometrically
frustrated lattices. The anharmonic coupling, facilitated by the
Dzyaloshinskii-Moriya interaction, and a highly-degenerate two-magnon continuum
yield a strong, non-perturbative damping of the high-energy magnon modes. We
provide a detailed account of the effect for the ferromagnet on the
kagom\'e lattice and propose further experiments.Comment: 4.5 p + 4 figs main, 8 p + 16 figs supplemental, typos correcte
Optimization of Methodological Support of the Tax Benefits Implementation in the Regions: the Practice of the Perm Territory
In the article, the problem of the methodological process support of regional tax benefits is reviewed. The method of tax benefits assessment, accepted in Perm Region, was chosen as an analysis object because the relatively long period of application of benefits has allowed to build enough statistics base. In the article, the reliability of budget, economic, investment, and social effectiveness assessments of application benefits, based on the Method, is investigated. The suggestions of its perfection are formulated
Singlet-triplet Hamiltonian for spin excitation in the Kondo-insulator
Within the framework of periodic asymmetric Anderson model for Kondo
isoulators an effective singlet-triplet Hamiltonian with indirect
antiferromagnetic f-f exchange interaction is introduced which allows to study
analytically the dynamic magnetic susceptibilities of f-electrons. The approach
allows to describe the three-level spin excitation spectrum with a specific
dispersion in . Distinctive feature of the consideration is the
introduction of small radius singlet and triplet collective f-d excitations
which at movement on a lattice form low - and high-energy spin bands.Comment: 7 page
Disorder-Induced Mimicry of a Spin Liquid in YbMgGaO
We suggest that a randomization of the pseudo-dipolar interaction in the
spin-orbit-generated low-energy Hamiltonian of YbMgGaO due to an
inhomogeneous charge environment from a natural mixing of Mg and
Ga can give rise to orientational spin disorder and mimic a
spin-liquid-like state. In the absence of such quenched disorder, and
density matrix renormalization group calculations both show robust ordered
states for the physically relevant phases of the model. Our scenario is
consistent with the available experimental data and further experiments are
proposed to support it.Comment: 5+ main text, 7+ supplemental, text asymptotically close to PR
- …
