4,481 research outputs found

    Optimization of Methodological Support of the Tax Benefits Implementation in the Regions: the Practice of the Perm Territory

    Full text link
    In the article, the problem of the methodological process support of regional tax benefits is reviewed. The method of tax benefits assessment, accepted in Perm Region, was chosen as an analysis object because the relatively long period of application of benefits has allowed to build enough statistics base. In the article, the reliability of budget, economic, investment, and social effectiveness assessments of application benefits, based on the Method, is investigated. The suggestions of its perfection are formulated

    A hybrid approach for predicting the distribution of vibro-acoustic energy in complex built-up structures

    Full text link
    Finding the distribution of vibro-acoustic energy in complex built-up structures in the mid-to-high frequency regime is a difficult task. In particular, structures with large variation of local wavelengths and/or characteristic scales pose a challenge referred to as the mid-frequency problem. Standard numerical methods such as the finite element method (FEM) scale with the local wavelength and quickly become too large even for modern computer architectures. High frequency techniques, such as statistical energy analysis (SEA), often miss important information such as dominant resonance behaviour due to stiff or small scale parts of the structure. Hybrid methods circumvent this problem by coupling FEM/BEM and SEA models in a given built-up structure. In the approach adopted here, the whole system is split into a number of subsystems which are treated by either FEM or SEA depending on the local wavelength. Subsystems with relative long wavelengths are modelled using FEM. Making a diffuse field assumption for the wave fields in the short wave length components, the coupling between subsystems can be reduced to a weighted random field correlation function. The approach presented results in an SEA-like set of linear equations which can be solved for the mean energies in the short wavelength subsystems

    Flux domes in superconducting films without edges

    Full text link
    Domelike magnetic-flux-density distributions previously have been observed experimentally and analyzed theoretically in superconducting films with edges, such as in strips and thin plates. Such flux domes have been explained as arising from a combination of strong geometric barriers and weak bulk pinning. In this paper we predict that, even in films with bulk pinning, flux domes also occur when vortices and antivortices are produced far from the film edges underneath current-carrying wires, coils, or permanent magnets placed above the film. Vortex-antivortex pairs penetrating through the film are generated when the magnetic field parallel to the surface exceeds H_{c1}+K_c, where H_{c1} is the lower critical field and K_c = j_c d is the critical sheet-current density (the product of the bulk critical current density j_c and the film thickness d). The vortices and antivortices move in opposite directions to locations where they join others to create separated vortex and antivortex flux domes. We consider a simple arrangement of a pair of current-carrying wires carrying current I_0 in opposite directions and calculate the magnetic-field and current-density distributions as a function of I_0 both in the bulk-pinning-free case (K_c = 0) and in the presence of bulk pinning, characterized by a field-independent critical sheet-current density (K_c > 0).Comment: 15 pages, 23 figure
    corecore