24 research outputs found
Inhibitor screening assay for neurexin-LRRTM adhesion protein interaction involved in synaptic maintenance and neurological disorders.
Synaptic adhesion molecules, including presynaptic neurexins (NRXNs) and post-synaptic leucine-rich repeat transmembrane (LRRTM) proteins are important for development and maintenance of brain neuronal networks. NRXNs are probably the best characterized synaptic adhesion molecules, and one of the major presynaptic organizer proteins. The LRRTMs were found as ligands for NRXNs. Many of the synaptic adhesion proteins have been linked to neurological cognitive disorders, such as schizophrenia and autism spectrum disorders, making them targets of interest for both biological studies, and towards drug development. Therefore, we decided to develop a screening method to target the adhesion proteins, here the LRRTM-NRXN interaction, to find small molecule probes for further studies in cellular settings. To our knowledge, no potent small molecule compounds against the neuronal synaptic adhesion proteins are available. We utilized the AlphaScreen technology, and developed an assay targeting the NRXN-LRRTM2 interaction. We carried out screening of 2000 compounds and identified hits with moderate IC50-values. We also established an orthogonal in-cell Western blot assay to validate hits. This paves way for future development of specific high affinity compounds by further high throughput screening of larger compound libraries using the methods established here. The method could also be applied to screening other NRXN-ligand interactions.Peer reviewe
Adenosine analogs bearing phosphate isosteres as human MDO1 ligands
The human O-acetyl-ADP-ribose deacetylase MDO1 is a mono-ADP-ribosylhydrolase involved in the reversal of post-translational modifications. Until now MDO1 has been poorly characterized, partly since no ligand is known besides adenosine nucleotides. Here, we synthesized thirteen compounds retaining the adenosine moiety and bearing bioisosteric replacements of the phosphate at the ribose 50-oxygen. These compounds are composed of either a squaryldiamide or an amide group as the bioisosteric replacement and/or as a linker. To these groups a variety of substituents were attached such as phenyl, benzyl, pyridyl, carboxyl, hydroxy and tetrazolyl. Biochemical evaluation showed that two compounds, one from both series, inhibited ADP-ribosyl hydrolysis mediated by MDO1 in high concentrations. (C) 2018 Elsevier Ltd. All rights reserved.Peer reviewe
AI is a viable alternative to high throughput screening: a 318-target study
: High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
Inhibitor screening assay for neurexin-LRRTM adhesion protein interaction involved in synaptic maintenance and neurological disorders
Abstract
Synaptic adhesion molecules, including presynaptic neurexins (NRXNs) and post-synaptic leucine-rich repeat transmembrane (LRRTM) proteins are important for development and maintenance of brain neuronal networks. NRXNs are probably the best characterized synaptic adhesion molecules, and one of the major presynaptic organizer proteins. The LRRTMs were found as ligands for NRXNs. Many of the synaptic adhesion proteins have been linked to neurological cognitive disorders, such as schizophrenia and autism spectrum disorders, making them targets of interest for both biological studies, and towards drug development. Therefore, we decided to develop a screening method to target the adhesion proteins, here the LRRTM-NRXN interaction, to find small molecule probes for further studies in cellular settings. To our knowledge, no potent small molecule compounds against the neuronal synaptic adhesion proteins are available. We utilized the AlphaScreen technology, and developed an assay targeting the NRXN-LRRTM2 interaction. We carried out screening of 2000 compounds and identified hits with moderate IC₅₀-values. We also established an orthogonal in-cell Western blot assay to validate hits. This paves way for future development of specific high affinity compounds by further high throughput screening of larger compound libraries using the methods established here. The method could also be applied to screening other NRXN-ligand interactions
Multiple crystal forms of human MacroD2
Abstract
MacroD2 is one of the three human macrodomain proteins characterized by their protein-linked mono-ADP-ribosyl-hydrolyzing activity. MacroD2 is a single-domain protein that contains a deep ADP-ribose-binding groove. In this study, new crystallization conditions for MacroD2 were found and three crystal structures of human MacroD2 in the apo state were solved in space groups P4₁2₁2, P43212 and P4₃, and refined at 1.75, 1.90 and 1.70 Å resolution, respectively. Structural comparison of the apo crystal structures with the previously reported crystal structure of MacroD2 in complex with ADP-ribose revealed conformational changes in the side chains of Val101, Ile189 and Phe224 induced by the binding of ADP-ribose in the active site. These conformational variations may potentially facilitate design efforts of a MacroD2 inhibitor
Development of an inhibitor screening assay for mono-ADP-ribosyl hydrolyzing macrodomains using AlphaScreen technology
Abstract
Protein mono-ADP-ribosylation is a posttranslational modification involved in the regulation of several cellular signaling pathways. Cellular ADP-ribosylation is regulated by ADP-ribose hydrolases via a hydrolysis of the protein-linked ADP-ribose. Most of the ADP-ribose hydrolases share a macrodomain fold. Macrodomains have been linked to several diseases, such as cancer, but their cellular roles are mostly unknown. Currently, there are no inhibitors available targeting the mono-ADP-ribose hydrolyzing macrodomains. We have developed a robust AlphaScreen assay for the screening of inhibitors against macrodomains having mono-ADP-ribose hydrolysis activity. We utilized this assay for validatory screening against human MacroD1 and identified five compounds inhibiting the macrodomain. Dose–response measurements and an orthogonal assay further validated four of these compounds as MacroD1 inhibitors. The developed assay is homogenous, easy to execute, and suitable for the screening of large compound libraries. The assay principle can also be adapted for other ADP-ribose hydrolyzing macrodomains, which can utilize a biotin-mono-ADP-ribosylated protein as a substrate
Medicinal chemistry perspective on targeting mono-ADP-ribosylating PARPs with small molecules
Abstract
Major advances have recently defined functions for human mono-ADP-ribosylating PARP enzymes (mono-ARTs), also opening up potential applications for targeting them to treat diseases. Structural biology combined with medicinal chemistry has allowed the design of potent small molecule inhibitors which typically bind to the catalytic domain. Most of these inhibitors are at the early stages, but some have already a suitable profile to be used as chemical tools. One compound targeting PARP7 has even progressed to clinical trials. In this review, we collect inhibitors of mono-ARTs with a typical “H–Y−Φ” motif (Φ = hydrophobic residue) and focus on compounds that have been reported as active against one or a restricted number of enzymes. We discuss them from a medicinal chemistry point of view and include an analysis of the available crystal structures, allowing us to craft a pharmacophore model that lays the foundation for obtaining new potent and more specific inhibitors
Activation of PARP2/ARTD2 by DNA damage induces conformational changes relieving enzyme autoinhibition
Abstract
Human PARP2/ARTD2 is an ADP-ribosyltransferase which, when activated by 5′-phosphorylated DNA ends, catalyses poly-ADP-ribosylation of itself, other proteins and DNA. In this study, a crystal structure of PARP2 in complex with an activating 5′-phosphorylated DNA shows that the WGR domain bridges the dsDNA gap and joins the DNA ends. This DNA binding results in major conformational changes, including reorganization of helical fragments, in the PARP2 regulatory domain. A comparison of PARP1 and PARP2 crystal structures reveals how binding to a DNA damage site leads to formation of a catalytically competent conformation. In this conformation, PARP2 is capable of binding substrate NAD⁺ and histone PARylation factor 1 that changes PARP2 residue specificity from glutamate to serine when initiating DNA repair processes. The structure also reveals how the conformational changes in the autoinhibitory regulatory domain would promote the flexibility needed by the enzyme to reach the target macromolecule for ADP-ribosylation
FMN-dependent oligomerization of putative lactate oxidase from Pediococcus acidilactici
Abstract
Lactate oxidases belong to a group of FMN-dependent enzymes and they catalyze a conversion of lactate to pyruvate with a release of hydrogen peroxide. Hydrogen peroxide is also utilized as a read out in biosensors to quantitate lactate levels in biological samples. Aerococcus viridans lactate oxidase is the best characterized lactate oxidase and our knowledge of lactate oxidases relies largely to studies conducted with that particular enzyme. Pediococcus acidilactici lactate oxidase is also commercially available for e.g. lactate measurements, but this enzyme has not been characterized in detail before. Here we report structural characterization of the recombinant enzyme and its co-factor dependent oligomerization. The crystal structures revealed two distinct conformations in the loop closing the active site, consistent with previous biochemical studies implicating the role of loop in catalysis. Despite the structural conservation of active site residues, we were not able to detect either oxidase or monooxygenase activity when L-lactate was used as a substrate. Pediococcus acidilactici lactate oxidase is therefore an example of a misannotation of an FMN-dependent enzyme, which catalyzes likely a so far unknown oxidation reaction
Crystallization and preliminary diffraction analysis of a β-galactosidase from Trichoderma reesei
The crystallization and preliminary diffraction analysis of a β-galactosidase from T. reesei is described. The crystals diffracted to 1.2 Å resolution