23 research outputs found

    Deliverable D2.1 - Ecosystem analysis and 6G-SANDBOX facility design

    Get PDF
    This document provides a comprehensive overview of the core aspects of the 6G-SANDBOX project. It outlines the project's vision, objectives, and the Key Performance Indicators (KPIs) and Key Value Indicators (KVIs) targeted for achievement. The functional and non-functional requirements of the 6G-SANDBOX Facility are extensively presented, based on a proposed reference blueprint. A detailed description of the updated reference architecture of the facility is provided, considering the requirements outlined. The document explores the experimentation framework, including the lifecycle of experiments and the methodology for validating KPIs and KVIs. It presents the key technologies and use case enablers towards 6G that will be offered within the trial networks. Each of the platforms constituting the 6G-SANDBOX Facility is described, along with the necessary enhancements to align them with the project's vision in terms of hardware, software updates, and functional improvements

    NetApps Validation and onboarding to Open Repository (final)

    No full text
    <p>EVOLVED-5G responds to the 5G PPP ICT-41-2020 5G innovations for verticals with third party services call, whose main goal is to deliver enhanced experimentation facilities on top of which third party experimenters (e.g., SMEs or any service provider and target vertical users) will have the opportunity to test their applications. The EVOLVED-5G project realises this vision by encouraging the creation of a Network App ecosystem revolving around a 5G facility which provides the tools and processes for the development, verification, validation, and certification of Network Apps as well as their smooth running on top of actual 5G network infrastructures, and finally their release to a marketplace.</p><p>The main goal of this deliverable is to demonstrate the utilization of validation tools at their final state and the onboarding to the open repository, which were created as part of WP3 and, more specifically, in Task 3.2. These tools are instrumental in overseeing the fully automated validation process using the final prototypes of the Network Applications that have been developed in WP4 and are described in D4.4-D4.7. Additionally, within the same context, the current deliverable provides specific information about the Key Performance Indicators (KPIs) of the Network Application alongside a vertical Application and defends that the integration of the former with the latter yields a satisfactory service delivery. Within the previous deliverable manual validation tests have been conducted on top of use-case driven test-cases/scenarios geared to collect qualitative data/Key Value Indicators (KVIs). Thus, the work outlined in the deliverable paves the way for the subsequent task in WP5, namely T5.4, focusing on the certification process. As soon as the validated Network Applications also pass the certification process, they will be ready to be made publicly available through the EVOLVED-5G Marketplace. This advancement is firmly based on the systematic validation these Network Apps have undergone.</p><p>As a final point, in the context of EVOLVED-5G, it is essential to highlight that a terminology update has been implemented. Specifically, the term "Network App" is now being used instead of "NetApp," as initially selected in the first period of the project. This update reflects the shortened form of "Network Application" and has been applied consistently across all project's documents and materials.</p&gt

    Respiratory tract mortality in cement workers: a proportionate mortality study

    No full text
    Background: The evidence regarding the association between lung cancer and occupational exposure to cement is controversial. This study investigated causes of deaths from cancer of respiratory tract among cement workers. Methods: The deaths of the Greek Cement Workers Compensation Scheme were analyzed covering the period 1969-1998. All respiratory, lung, laryngeal and urinary bladder cancer proportionate mortality were calculated for cement production, maintenance, and office workers in the cement industry. Mortality from urinary bladder cancer was used as an indirect indicator of the confounding effect of smoking. Results: Mortality from all respiratory cancer was significantly increased in cement production workers (PMR = 1.91; 95% CI 1.54 to 2.33). The proportionate mortality from lung cancer was significantly elevated (PMR = 2.05; 95% CI 1.65 to 2.52). A statistically significant increase in proportionate mortality due to respiratory (PMR = 1.7; 95% CI 1.2 to 2.34). and lung cancer (PMR = 1.67; 95% CI = 1.15-2.34) among maintenance workers has been observed. The PMR among the three groups of workers (production, maintenance, office) did differ significantly for lung cancer (p = 0.001), while the PMR for urinary bladder cancer found to be similar among the three groups of cement workers. Conclusion: Cement production, and maintenance workers presented increased lung and respiratory cancer proportionate mortality, and this finding probably cannot be explained by the confounding effect of smoking alone. Further research including use of prospective cohort studies is needed in order to establish a causal association between occupational exposure to cement and risk of lung cancer

    Upper crust seismic anisotropy study and temporal variations of shear-wave splitting parameters in the western Gulf of Corinth (Greece) during 2013

    No full text
    International audienceDuring 2013, the Western Gulf of Corinth (WGoC, Central Greece) experienced a period of increased seismicity, with a total of over 4700 earthquakes. This fact in combination with the existence of dense seismological networks provided an excellent opportunity for the study of crustal seismic anisotropy. Of special note is the seismic crisis period of May–October, during which the main feature was the occurrence of the Helike seismic swarm. Polarigrams and hodograms were employed to analyze local waveforms. This method resulted in 659 measurements of shear-wave splitting parameters, namely the direction of the fast shear-wave (Sfast), the time-delay (Td) between the two split shear-waves and the source polarization direction. A pattern of a general WNW–ESE anisotropy direction, parallel to the GoC’s fault systems’ strike, is established, with the exception of two stations located in adjacent areas at the north. This is in agreement with the existence of fluid-filled microcracks, oriented according to the regional stress field. The obtained splitting parameters are compared to the results of other anisotropy studies performed in the WGoC. A detailed analysis of the temporal evolution of the normalized time-delay (Tn) was performed to associate temporal stress changes to seismicity fluctuations. Increase in normalized time-delays and drop before the occurrence of the first significant event belonging to the ‘‘July Cluster”, which occurred between the 13th and the 16th of the same month, was observed for most of the analyzed stations

    Providing Evidence-Based, Intelligent Support for Flood Resilient Planning and Policy: The PEARL Knowledge Base

    No full text
    While flood risk is evolving as one of the most imminent natural hazards and the shift from a reactive decision environment to a proactive one sets the basis of the latest thinking in flood management, the need to equip decision makers with necessary tools to think about and intelligently select options and strategies for flood management is becoming ever more pressing. Within this context, the Preparing for Extreme and Rare Events in Coastal Regions (PEARL) intelligent knowledge-base (PEARL KB) of resilience strategies is presented here as an environment that allows end-users to navigate from their observed problem to a selection of possible options and interventions worth considering within an intuitive visual web interface assisting advanced interactivity. Incorporation of real case studies within the PEARL KB enables the extraction of (evidence-based) lessons from all over the word, while the KB’s collection of methods and tools directly supports the optimal selection of suitable interventions. The Knowledge-Base also gives access to the PEARL KB Flood Resilience Index (FRI) tool, which is an online tool for resilience assessment at a city level available to authorities and citizens. We argue that the PEARL KB equips authorities with tangible and operational tools that can improve strategic and operational flood risk management by assessing and eventually increasing resilience, while building towards the strengthening of risk governance. The online tools that the PEARL KB gives access to were demonstrated and tested in the city of Rethymno, Greece

    Exploring the Cyber-Physical Threat Landscape of Water Systems: A Socio-Technical Modelling Approach

    No full text
    The identification and assessment of the cyber-physical-threat landscape that surrounds water systems in the digital era is governed by complex socio-technical dynamics and uncertainties that exceed the boundaries of traditional risk assessment. This work provides a remedy for those challenges by incorporating socio-technical modelling to account for the adaptive balance between goal-driven behaviours and available skills of adversaries, exploitable vulnerabilities of assets and utility’s security posture, as well as an uncertainty-aware multi-scenario analysis to assess the risk level of any utility against cyber-physical threats. The proposed risk assessment framework, underpinned by a dedicated modelling chain, deploys a modular sequence of processes for (a) the estimation of vulnerability-induced probabilities and attack characteristics of the threat landscape under a spectrum of adversaries, (b) its formulation to a representative set of stochastically generated threat scenarios, (c) the combined cyber-physical stress-testing of the system against the generated scenarios and (d) the inference of the system’s risk level at system and asset level. The proposed framework is demonstrated by exploring different configurations of a synthetic utility case study that investigate the effects and efficiency that different cyber-security practices and design traits can have over the modification of the risk level of the utility at various dimensions

    Revisiting Flood Hazard Assessment Practices under a Hybrid Stochastic Simulation Framework

    No full text
    We propose a novel probabilistic approach to flood hazard assessment, aiming to address the major shortcomings of everyday deterministic engineering practices in a computationally efficient manner. In this context, the principal sources of uncertainty are defined across the overall modeling procedure, namely, the statistical uncertainty of inferring annual rainfall maxima through distribution models that are fitted to empirical data, and the inherently stochastic nature of the underlying hydrometeorological and hydrodynamic processes. Our work focuses on three key facets, i.e., the temporal profile of storm events, the dependence of flood generation mechanisms on antecedent soil moisture conditions, and the dependence of runoff propagation over the terrain and the stream network on the intensity of the flood event. These are addressed through the implementation of a series of cascade modules, based on publicly available and open-source software. Moreover, the hydrodynamic processes are simulated by a hybrid 1D/2D modeling approach, which offers a good compromise between computational efficiency and accuracy. The proposed framework enables the estimation of the uncertainty of all flood-related quantities, by means of empirically derived quantiles for given return periods. Lastly, a set of easily applicable flood hazard metrics are introduced for the quantification of flood hazard

    Revisiting Flood Hazard Assessment Practices under a Hybrid Stochastic Simulation Framework

    No full text
    We propose a novel probabilistic approach to flood hazard assessment, aiming to address the major shortcomings of everyday deterministic engineering practices in a computationally efficient manner. In this context, the principal sources of uncertainty are defined across the overall modeling procedure, namely, the statistical uncertainty of inferring annual rainfall maxima through distribution models that are fitted to empirical data, and the inherently stochastic nature of the underlying hydrometeorological and hydrodynamic processes. Our work focuses on three key facets, i.e., the temporal profile of storm events, the dependence of flood generation mechanisms on antecedent soil moisture conditions, and the dependence of runoff propagation over the terrain and the stream network on the intensity of the flood event. These are addressed through the implementation of a series of cascade modules, based on publicly available and open-source software. Moreover, the hydrodynamic processes are simulated by a hybrid 1D/2D modeling approach, which offers a good compromise between computational efficiency and accuracy. The proposed framework enables the estimation of the uncertainty of all flood-related quantities, by means of empirically derived quantiles for given return periods. Lastly, a set of easily applicable flood hazard metrics are introduced for the quantification of flood hazard

    FLIRE DSS: A web tool for the management of floods and wildfires in urban and periurban areas

    No full text
    A web-based Decision Support System, named FLIRE DSS, for combined forest fire control and planning as well as flood risk management, has been developed and is presented in this paper. State of the art tools and models have been used in order to enable Civil Protection agencies and local stakeholders to take advantage of the web based DSS without the need of local installation of complex software and their maintenance. Civil protection agencies can predict the behavior of a fire event using real time data and in such a way plan its efficient elimination. Also, during dry periods, agencies can implement “what-if” scenarios for areas that are prone to fire and thus have available plans for forest fire management in case such scenarios occur. Flood services include flood maps and flood-related warnings and become available to relevant authorities for visualization and further analysis on a daily basis. When flood warnings are issued, relevant authorities may proceed to efficient evacuation planning for the areas that are likely to flood and thus save human lives. Real-time weather data from ground stations provide the necessary inputs for the calculation of the fire model in real-time, and a high resolution weather forecast grid supports flood modeling as well as the development of “what-if” scenarios for the fire modeling. All these can be accessed by various computer sources including PC, laptop, Smartphone and tablet either by normal network connection or by using 3G and 4G cellular network. The latter is important for the accessibility of the FLIRE DSS during firefighting or rescue operations during flood events. All these methods and tools provide the end users with the necessary information to design an operational plan for the elimination of the fire events and the efficient management of the flood events in almost real time. Concluding, the FLIRE DSS can be easily transferred to other areas with similar characteristics due to its robust architecture and its flexibility
    corecore