1,543 research outputs found

    Quantitative PET/CT imaging and dosimetry of 89Zr labelled compounds

    Get PDF
    Lammertsma, A.A. [Promotor]Boellaard, R. [Promotor]Huisman, M.C. [Copromotor

    Vision-Based Production of Personalized Video

    No full text
    In this paper we present a novel vision-based system for the automated production of personalised video souvenirs for visitors in leisure and cultural heritage venues. Visitors are visually identified and tracked through a camera network. The system produces a personalized DVD souvenir at the end of a visitor’s stay allowing visitors to relive their experiences. We analyze how we identify visitors by fusing facial and body features, how we track visitors, how the tracker recovers from failures due to occlusions, as well as how we annotate and compile the final product. Our experiments demonstrate the feasibility of the proposed approach

    Long-lived Giant Number Fluctuations in a Swarming Granular Nematic

    Full text link
    Coherently moving flocks of birds, beasts or bacteria are examples of living matter with spontaneous orientational order. How do these systems differ from thermal equilibrium systems with such liquid-crystalline order? Working with a fluidized monolayer of macroscopic rods in the nematic liquid crystalline phase, we find giant number fluctuations consistent with a standard deviation growing linearly with the mean, in contrast to any situation where the Central Limit Theorem applies. These fluctuations are long-lived, decaying only as a logarithmic function of time. This shows that flocking, coherent motion and large-scale inhomogeneity can appear in a system in which particles do not communicate except by contact.Comment: This is the author's version of the work. It is posted here by permission of the AAAS. The definitive version is to appear in SCIENC

    Underwater Sound Characteristics of a Ship with Controllable Pitch Propeller

    Get PDF
    The time-dependent spectral characteristics of underwater sound radiated by an oceanic vessel have complex dependencies on ship machinery, propeller dynamics, and the hydrodynamics of the ship exhaust and motion, as well as onboard activities. Here, the underwater sound radiated by a ship equipped with a controllable pitch propeller (CPP) is analyzed and quantified via its (i) power spectral density for signal energetics, (ii) temporal coherence for machinery tonal sound, and (iii) spectral coherence for propeller amplitude-modulated cavitation noise. Frequency-modulated (FM) tonal signals are also characterized in terms of their frequency variations. These characteristics are compared for different propeller pitch ratios, ranging from 20% to 82% at a fixed number of propeller revolutions per minute (RPM). The efficacy and robustness of ship parameter estimation at different pitches are discussed. Finally, an analysis of one special measurement is provided: propeller pitch and RPM over the duration of the measurement when the ship changes speed. The 50% pitch was found to be a crucial point for this ship, around which the tonal characteristics of its underwater radiated sound attain their peak values while broadband sound and associated spectral coherences are at a minimum. The findings here elucidate the effects of pitch variation on underwater sound radiated by ships with controllable pitch propellers and has applications in ship design and underwater noise mitigation
    corecore