17 research outputs found

    The Star-Nosed Mole Reveals Clues to the Molecular Basis of Mammalian Touch

    Get PDF
    <div><p>Little is known about the molecular mechanisms underlying mammalian touch transduction. To identify novel candidate transducers, we examined the molecular and cellular basis of touch in one of the most sensitive tactile organs in the animal kingdom, the star of the star-nosed mole. Our findings demonstrate that the trigeminal ganglia innervating the star are enriched in tactile-sensitive neurons, resulting in a higher proportion of light touch fibers and lower proportion of nociceptors compared to the dorsal root ganglia innervating the rest of the body. We exploit this difference using transcriptome analysis of the star-nosed mole sensory ganglia to identify novel candidate mammalian touch and pain transducers. The most enriched candidates are also expressed in mouse somatosesensory ganglia, suggesting they may mediate transduction in diverse species and are not unique to moles. These findings highlight the utility of examining diverse and specialized species to address fundamental questions in mammalian biology.</p> </div

    Expression of candidate transducers in mouse ganglia.

    No full text
    <p><i>(A)</i> Ion channels enriched in mole TG and DRG that were amplified by RT-PCR from mouse TG and DRG. All genes were amplified independently from TG and DRG samples isolated from two mice. Channels shown in bold are candidates that have not been previously reported as expressed in somatosensory neurons. (B) qPCR analysis of selected genes in mouse TG and kidney. Results show average expression normalized to Gapdh (n = 3). Error bars represent s.e.m.</p

    Functional enrichment of light touch-sensitive neurons in the star-nosed mole trigeminal ganglia.

    No full text
    <p>(<i>A</i>) Representative images of Fura-2 loaded star-nosed mole TG and DRG neurons before and after exposure to 10% radial stretch and capsaicin (1 µM). (<i>B</i>) Average percentage of TG (green) and DRG (grey) neurons activated by capsaicin (Cap), mustard oil (MO), menthol (Me), hydroxy-α-sanshool (San), hypotonic solution (Hypo) and 10% radial stretch (Str) (error bars represent s.e.m. n = 4 samples, **p< 0.01, *p< 0.05 by one way ANOVA).</p
    corecore