79 research outputs found

    RB1CC1 Together with RB1 and p53 Predicts Long-Term Survival in Japanese Breast Cancer Patients

    Get PDF
    RB1-inducible coiled-coil 1 (RB1CC1) plays a significant role in the enhancement of the retinoblastoma tumor suppressor (RB1) pathway and is involved in breast cancer development. However, RB1CC1's role in clinical progression of breast cancer has not yet been evaluated, so, as a first step, it is necessary to establish its usefulness as a tool to evaluate breast cancer patients. In this report, we have analyzed the correlation between abnormalities in the RB1CC1 pathway and long-term prognosis, because disease-specific death in later periods (>5 years) of the disease is a serious problem in breast cancer. Breast cancer tissues from a large cohort in Japan were evaluated by conventional immunohistochemical methods for the presence of the molecules involved in the RB1CC1 pathway, including RB1CC1, RB1, p53, and other well-known prognostic markers for breast cancer, such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. The correlation between the immunohistochemical results and clinical outcomes of 323 breast cancer patients was analyzed using a Kaplan-Meier log-rank test and a multivariate Cox proportional hazards regression analysis. Absence of nuclear RB1CC1 expression was associated with the worst prognosis (Log-rank test, Chi-Square value = 17.462, p<0.0001). Dysfunction of either one of RB1CC1, RB1, or p53 was associated with the highest risk for cancer-specific death, especially related to survival lasting more than 5 years (multivariate Cox proportional hazard ratio = 3.951, 95% Confidence Interval = 1.566–9.967, p = 0.0036). Our present data demonstrate that the combined evaluation of RB1CC1, RB1 and p53 by conventional immunohistochemical analysis provides an accurate prediction of the long-term prognoses of breast cancer patients, which can be carried out as a routine clinical examination

    Oligo-DNA Custom Macroarray for Monitoring Major Pathogenic and Non-Pathogenic Fungi and Bacteria in the Phyllosphere of Apple Trees

    Get PDF
    BACKGROUND: To monitor the richness in microbial inhabitants in the phyllosphere of apple trees cultivated under various cultural and environmental conditions, we developed an oligo-DNA macroarray for major pathogenic and non-pathogenic fungi and bacteria inhabiting the phyllosphere of apple trees. METHODS AND FINDINGS: First, we isolated culturable fungi and bacteria from apple orchards by an agar-plate culture method, and detected 32 fungal and 34 bacterial species. Alternaria, Aureobasidium, Cladosporium, Rhodotorula, Cystofilobasidium, and Epicoccum genera were predominant among the fungi, and Bacillus, Pseudomonas, Sphingomonas, Methylobacterium, and Pantoea genera were predominant among the bacteria. Based on the data, we selected 29 major non-pathogenic and 12 phytopathogenic fungi and bacteria as the targets of macroarray. Forty-one species-specific 40-base pair long oligo-DNA sequences were selected from the nucleotide sequences of rDNA-internal transcribed spacer region for fungi and 16S rDNA for bacteria. The oligo-DNAs were fixed on nylon membrane and hybridized with digoxigenin-labeled cRNA probes prepared for each species. All arrays except those for Alternaria, Bacillus, and their related species, were specifically hybridized. The array was sensitive enough to detect 10(3) CFU for Aureobasidium pullulans and Bacillus cereus. Nucleotide sequencing of 100 each of independent fungal rDNA-ITS and bacterial 16S-rDNA sequences from apple tree was in agreement with the macroarray data obtained using the same sample. Finally, we analyzed the richness in the microbial inhabitants in the samples collected from apple trees in four orchards. Major apple pathogens that cause scab, Alternaria blotch, and Marssonina blotch were detected along with several non-phytopathogenic fungal and bacterial inhabitants. CONCLUSIONS: The macroarray technique presented here is a strong tool to monitor the major microbial species and the community structures in the phyllosphere of apple trees and identify key species antagonistic, supportive or co-operative to specific pathogens in the orchard managed under different environmental conditions

    Checkpoint kinase inhibitor AZD7762 strongly sensitises urothelial carcinoma cells to gemcitabine

    Get PDF
    Background: More effective chemotherapies are urgently needed for bladder cancer, a major cause of morbidity and mortality worldwide. We therefore explored the efficacy of the combination of gemcitabine and AZD7762, a checkpoint kinase 1/2 (CHK1/2) inhibitor, for bladder cancer. Methods: Viability, clonogenicity, cell cycle distribution and apoptosis were assessed in urothelial cancer cell lines and various non-malignant urothelial cells treated with gemcitabine and AZD7762. DNA damage was assessed by ?H2A.X and 53-BP1 staining and checkpoint activation was followed by Western blotting. Pharmacological inhibition of CHK1 and CHK2 was compared to downregulation of either CHK1 or CHK2 using siRNAs. Results: Combined use of gemcitabine and AZD7762 synergistically reduced urothelial carcinoma cell viability and colony formation relative to either single treatment. Non-malignant urothelial cells were substantially less sensitive to this drug combination. Gemcitabine plus AZD7762 inhibited cell cycle progression causing cell accumulation in S-phase. Moreover, the combination induced pronounced levels of apoptosis as indicated by an increase in the fraction of sub-G1 cells, in the levels of cleaved PARP, and in caspase 3/7 activity. Mechanistic investigations showed that AZD7762 treatment inhibited the repair of gemcitabine-induced double strand breaks by interference with CHK1, since siRNA-mediated depletion of CHK1 but not of CHK2 mimicked the effects of AZD7762. Conclusions: AZD7762 enhanced sensitivity of urothelial carcinoma cells to gemcitabine by inhibiting DNA repair and disturbing checkpoints. Combining gemcitabine with CHK1 inhibition holds promise for urothelial cancer therapy

    Identification of Carnitine Transporter CT1 Binding Protein Lin-7 in Nervous System

    Get PDF
    _L-Carnitine is an essential component of mitochondrial fatty acid b-oxidation in the muscle and may control the acetyl moiety levels in the brain for acetylcholine synthesis. Carnitine transporter 1(CT1)is the high affinity _L-carnitine transporter whose localization was observed in the kidney, testis, liver, skeletal muscle and brain. To clarify the molecular mechanism of carnitine transport, we sought to find the interacting protein that may be related to the transport function of CT1. Using the intracellular C-terminal region of rat CT1 containing PDZ(PSD95/DLG/ZO-1)motif as bait, we performed the yeast two-hybrid screening against rat brain cDNA library. Thirty two positive clones were obtained from the 2.7×10^7 clones screened. One of them was PDZ domain-containing protein Lin-7. We found that Lin-7 interacts specifically with C-termini of CT1:deletion and mutation of the CT1 C-terminal PDZ-motif abolished the interaction with Lin-7 in the yeast two-hybrid assay. In addition, a PDZ domain within Lin-7 associates with the CT1 C-terminal. The association of CT1 with Lin-7 enhanced _L-carnitine transport activities in HEK293 cells although there is no statistical significance. Coexpression of Lin-7 and CT1 is identified in motor neurons of the spinal cord ventral horn together with Lin-2, a binding partner of Lin-7 known to assemble proteins involved in synaptic vesicle exocytosis and synaptic junctions. Therefore, Lin-7 interacts with CT1 and may regulate their subcellular distribution or function in central nervous system

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Construction Cost of KP Mill Construction for Bioethanol Production

    No full text

    A Case of Long-term Survival of Advanced Paratesticular Rhabdomyosarcoma Treated With a Multimodal Therapy Including a Combination of Cyclophosphamide, Vincristine, Doxorubicin and Dacarbazine

    Get PDF
    There is no established treatment for advanced rhabdomyosarcoma (RMS) with metastases at the time of diagnosis. A 17-year-old male was referred to our hospital because of a right scrotal mass. Computed tomography showed multiple lung metastases with pleural effusion and retroperitoneal lymph node metastasis, and bone scintigraphy revealed multiple bone metastases. Right high orchiectomy was performed and the tumor was diagnosed as paratesticular embryonal RMS. He was treated with a multimodal therapy including 17 cycles of combination chemotherapy consisting of cyclophosphamide, vincristine, doxorubicin and dacarbazine (CYVADIC) and achieved a long-term survival of 4 years
    corecore