52 research outputs found

    Perforation of intramural gastric metastasis during preoperative chemotherapy in a patient with thoracic esophageal squamous cell carcinoma

    Get PDF
    AbstractIntroductionPerforation of intramural metastasis to the stomach (IMS) from esophageal cancer during chemotherapy has not been reported.Presentation of caseA 68-year-old male consulted our hospital due to appetite loss. He was diagnosed with advanced esophageal squamous cell carcinoma in the lower thoracic esophagus along with a large IMS in the upper stomach. The patient received preoperative chemotherapy of docetaxel, cisplatin, and 5-fluorouracil (DCF). During the second cycle of DCF, he had upper abdominal pain and was diagnosed with gastric perforation. Omental implantation repair for the perforation, peritoneal drainage, tube-gastrostomy, and tube-jejunostomy were performed.At 24 days after emergency surgery, he underwent thoracoscopic radical esophagectomy with total gastrectomy and reconstruction with colonic interposition. Pathological findings in the esophagus demonstrated complete replacement of the tumor by fibrosis. The gastric tumor was replaced by scar tissue with multinucleated giant cells along with a small amount of viable cancer cells. The patient was alive and healthy at 14 months after the radical operation, without tumor recurrence.DiscussionThe gastric perforation occurred due to rapid regression of the IMS which had involved the whole gastric wall before chemotherapy. Close monitoring to detect rapid tumor shrinkage during chemotherapy in patients with IMS may be warranted. A two-step operation was proposed to achieve safe curative treatment in patients with perforation of IMS during preoperative chemotherapy.ConclusionWe describe the first reported case of a patient with esophageal squamous cell carcinoma who showed perforation of IMS during preoperative chemotherapy

    Feedback Control of the Arachidonate Cascade in Osteoblastic Cells by 15-deoxy-Δ12,14-Prostaglandin J2

    Get PDF
    15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) and an anti-diabetic thiazolidinedione, troglitazone (TRO) are peroxisome proliferator-activated receptor (PPAR)-γ ligands, which regulate immuno-inflammatory reactions as well as adipocyte differentiation. We previously reported that 15d-PGJ2 can suppress interleukin (IL)-1β-induced prostaglandin E2 (PGE2) synthesis in synoviocytes of rheumatoid arthritis (RA). IL-1 also stimulates PGE2 synthesis in osteoblasts by regulation of cyclooxygenase (COX)-2 and regulates osteoclastic bone resorption in various diseases such as RA and osteoporosis. In this study, we investigated the feedback mechanism of the arachidonate cascade in mouse osteoblastic cells, MC3T3-E1 cells, which differentiate into mature osteoblasts. Treatment with 15d-PGJ2 led to a significant increase in IL-1α-induced COX-2 expression and PGE2 production in a dose dependent manner. The effect of 15d-PGJ2 was stronger than that of TRO. However, it did not affect the expression of COX-1. In addition, cell viability of MC3T3-E1 cells was not changed in the condition we established. This means that 15d-PGJ2 exerts a positive feedback regulation of the arachidonate cascade of PGE2 in osteoblastic cells. These results may provide important information about the pathogenesis and treatment of bone resorption in a variety of diseases such as RA and osteoporosis

    Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation

    Get PDF
    Stable inheritance of DNA methylation is critical for maintaining differentiated phenotypes in multicellular organisms. We have recently identified dual mono-ubiquitylation of histone H3 (H3Ub2) by UHRF1 as an essential mechanism to recruit DNMT1 to chromatin. Here, we show that PCNA-associated factor 15 (PAF15) undergoes UHRF1-dependent dual mono-ubiquitylation (PAF15Ub2) on chromatin in a DNA replication-coupled manner. This event will, in turn, recruit DNMT1. During early S-phase, UHRF1 preferentially ubiquitylates PAF15, whereas H3Ub2 predominates during late S-phase. H3Ub2 is enhanced under PAF15 compromised conditions, suggesting that H3Ub2 serves as a backup for PAF15Ub2. In mouse ES cells, loss of PAF15Ub2 results in DNA hypomethylation at early replicating domains. Together, our results suggest that there are two distinct mechanisms underlying replication timing-dependent recruitment of DNMT1 through PAF15Ub2 and H3Ub2, both of which are prerequisite for high fidelity DNA methylation inheritance

    The hrp genes of Pseudomonas cichorii are essential for pathogenicity on eggplant but not on lettuce

    Get PDF
    Pseudomonas cichorii causes necrotic lesions in eggplant and rot in lettuce. Through transposon insertion into P. cichorii strain SPC9018 we produced two mutants, 4-57 and 2-99, that lost virulence on eggplant but not lettuce. Analyses showed that a transposon was inserted into the hrpG gene in 4-57 and the hrcT gene in 2-99. Nucleotide sequences of the hrp genes of SPC9018 are homologous to those of Pseudomonas viridiflava BS group strains. The pathogenicity of 4-57 on eggplant was restored by transformation with an hrpF operon, originating from either SPC9018 or the BS group member P. viridiflava strain 9504 (Pv9504). These data suggested the involvement of hrp genes in the pathogenicity of SPC9018 on eggplant, and functional conservation of hrpF operons between SPC9018 and Pv9504. Both the hrpS mutant and the hrpL mutant were unable to cause necrotic lesions on eggplant leaves but retained their pathogenicity against lettuce. These results suggest that the pathogenicity of P. cichorii is hrp-dependent in eggplant, but not in lettuce

    B cell-derived GABA elicits IL-10⁺ macrophages to limit anti-tumour immunity

    Get PDF
    GABAを標的とする抗腫瘍免疫機構 --代謝産物を介した免疫細胞間制御の一端を解明--. 京都大学プレスリリース. 2021-11-10.Small, soluble metabolites not only are essential intermediates in intracellular biochemical processes, but can also influence neighbouring cells when released into the extracellular milieu1-3. Here we identify the metabolite and neurotransmitter GABA as a candidate signalling molecule synthesized and secreted by activated B cells and plasma cells. We show that B cell-derived GABA promotes monocyte differentiation into anti-inflammatory macrophages that secrete interleukin-10 and inhibit CD8⁺ T cell killer function. In mice, B cell deficiency or B cell-specific inactivation of the GABA-generating enzyme GAD67 enhances anti-tumour responses. Our study reveals that, in addition to cytokines and membrane proteins, small metabolites derived from B-lineage cells have immunoregulatory functions, which may be pharmaceutical targets allowing fine-tuning of immune responses

    Mata au hi made

    No full text

    Nageki no oka

    No full text

    Namida no sanbika

    No full text
    corecore