7 research outputs found

    Resolution of Atropisomeric Cyclic Catechol Monoether O‑Sulfate Esters by a Molluscan Sulfatase

    Get PDF
    Atropisomeric cyclic catechol ethers are notoriously difficult to resolve by classical chiral phase high-performance liquid chromatography. Here, we show the first application of sulfatase enzymes for the kinetic resolution of O-sulfato-catechol ethers with enantioselectivities ranging from 30 to 65% ee, as determined by preparation of their Marfey's ether derivatives. Substrate-structure dependence was briefly explored

    Resolution of Atropisomeric Cyclic Catechol Monoether <i>O</i>‑Sulfate Esters by a Molluscan Sulfatase

    No full text
    Atropisomeric cyclic catechol ethers are notoriously difficult to resolve by classical chiral phase high-performance liquid chromatography. Here, we show the first application of sulfatase enzymes for the kinetic resolution of <i>O</i>-sulfato-catechol ethers with enantioselectivities ranging from 30 to 65% ee, as determined by preparation of their Marfey’s ether derivatives. Substrate-structure dependence was briefly explored

    Phorbasterones A−D, Cytotoxic Nor

    No full text

    1-O-Sulfatobastadins-1 and -2 from Ianthella basta (Pallas).Antagonists of the yR1-FKBP12 Ca2+ Channel

    No full text
    Two new sulfate monoesters of hemibastadins-1 and -2 were isolated from the marine sponge Ianthella basta (Pallas) from Guam. A third new compound was tentatively assigned the structure 34-O-sulfatobastadin-9. The 1-O-sulfatohemibastadins-1 and –2 were antagonists of the RyR1-FKBP12 Ca2+ channel under conditions where the known compound bastadin-5 exhibits potent agonism (EC50 2μM)
    corecore