288 research outputs found

    Introducing Exclusion Logic as a Deontic Logic

    Get PDF
    This paper introduces Exclusion Logic - a simple modal logic without negation or disjunction. We show that this logic has an efficient decision procedure. We describe how Exclusion Logic can be used as a deontic logic. We compare this deontic logic with Standard Deontic Logic and with more syntactically restricted logics

    Being More Realistic About Reasons: On Rationality and Reasons Perspectivism

    Get PDF
    This paper looks at whether it is possible to unify the requirements of rationality with the demands of normative reasons. It might seem impossible to do because one depends upon the agent’s perspective and the other upon features of the situation. Enter Reasons Perspectivism. Reasons perspectivists think they can show that rationality does consist in responding correctly to reasons by placing epistemic constraints on these reasons. They think that if normative reasons are subject to the right epistemic constraints, rational requirements will correspond to the demands generated by normative reasons. While this proposal is prima facie plausible, it cannot ultimately unify reasons and rationality. There is no epistemic constraint that can do what reasons perspectivists would need it to do. Some constraints are too strict. The rest are too slack. This points to a general problem with the reasons-first program. Once we recognize that the agent’s epistemic position helps determine what she should do, we have to reject the idea that the features of the agent’s situation can help determine what we should do. Either rationality crowds out reasons and their demands or the reasons will make unreasonable demands

    Grifonin-1: A Small HIV-1 Entry Inhibitor Derived from the Algal Lectin, Griffithsin

    Get PDF
    Background: Griffithsin, a 121-residue protein isolated from a red algal Griffithsia sp., binds high mannose N-linked glycans of virus surface glycoproteins with extremely high affinity, a property that allows it to prevent the entry of primary isolates and laboratory strains of T- and M-tropic HIV-1. We used the sequence of a portion of griffithsin's sequence as a design template to create smaller peptides with antiviral and carbohydrate-binding properties. Methodology/Results: The new peptides derived from a trio of homologous β-sheet repeats that comprise the motifs responsible for its biological activity. Our most active antiviral peptide, grifonin-1 (GRFN-1), had an EC50 of 190.8±11.0 nM in in vitro TZM-bl assays and an EC50 of 546.6±66.1 nM in p24gag antigen release assays. GRFN-1 showed considerable structural plasticity, assuming different conformations in solvents that differed in polarity and hydrophobicity. Higher concentrations of GRFN-1 formed oligomers, based on intermolecular β-sheet interactions. Like its parent protein, GRFN-1 bound viral glycoproteins gp41 and gp120 via the N-linked glycans on their surface. Conclusion: Its substantial antiviral activity and low toxicity in vitro suggest that GRFN-1 and/or its derivatives may have therapeutic potential as topical and/or systemic agents directed against HIV-1

    ARPES: A probe of electronic correlations

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct methods of studying the electronic structure of solids. By measuring the kinetic energy and angular distribution of the electrons photoemitted from a sample illuminated with sufficiently high-energy radiation, one can gain information on both the energy and momentum of the electrons propagating inside a material. This is of vital importance in elucidating the connection between electronic, magnetic, and chemical structure of solids, in particular for those complex systems which cannot be appropriately described within the independent-particle picture. Among the various classes of complex systems, of great interest are the transition metal oxides, which have been at the center stage in condensed matter physics for the last four decades. Following a general introduction to the topic, we will lay the theoretical basis needed to understand the pivotal role of ARPES in the study of such systems. After a brief overview on the state-of-the-art capabilities of the technique, we will review some of the most interesting and relevant case studies of the novel physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.Comment: Chapter to appear in "Strongly Correlated Systems: Experimental Techniques", edited by A. Avella and F. Mancini, Springer Series in Solid-State Sciences (2013). A high-resolution version can be found at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Reviews/ARPES_Springer.pdf. arXiv admin note: text overlap with arXiv:cond-mat/0307085, arXiv:cond-mat/020850

    A Deontic Logic Reasoning Infrastructure

    Get PDF
    A flexible infrastructure for the automation of deontic and normative reasoning is presented. Our motivation is the development, study and provision of legal and moral reasoning competencies in future intelligent machines. Since there is no consensus on the “best” deontic logic formalisms and since the answer may be application specific, a flexible infrastructure is proposed in which candidate logic formalisms can be varied, assessed and compared in experimental ethics application studies. Our work thus links the historically rich research areas of classical higher-order logic, deontic logics, normative reasoning and formal ethics
    corecore