
Introducing Exclusion Logic as a Deontic Logic

Richard Evans?

Maxis

Abstract. This paper introduces Exclusion Logic - a simple modal logic
without negation or disjunction. We show that this logic has an efficient
decision procedure. We describe how Exclusion Logic can be used as a
deontic logic. We compare this deontic logic with Standard Deontic Logic
and with more syntactically restricted logics.

Key words: deontic, material incompatibility, exclusion, hierarchical
finite-state machine

1 Outline

We start with a simple pre-propositional system called Exclusion Logic (hereafter
EL). Once we have outlined the semantics and decision-procedure for EL, we use
it to define a specifically deontic exclusion logic, DEL as a syntactic extension
of EL.

EL was designed to capture the expressive resources of Hierarchical Finite-
State Machines in a declarative language. It is a simple language for constructing
trees of data. It does not contain operators for negation or disjunction, and uses
only a restricted version of implication. Instead, it has an operator for expressing
the idea that one data-value excludes other values.

1.1 Motivation

Typically, logicians treat relations of material-incompatibility between proposi-
tions as defined in terms of non-logical rules involving negation. For example: if
we want to say that Red and Green are one-place predicates which are materially
incompatible, we have to add extra non-logical axioms:

Red(x)→ ¬ Green(x)

Green(x)→ ¬ Red(x)

But there is an alternative tradition, initiated by Hegel and rearticulated by
Sellars and Brandom, in which material incompatibility is conceptually prior to
negation. According to this alternative tradition, there can be linguistic practices

? Thanks to Martin Berger and Jeff Orkin for detailed feedback. I am also grateful to
the Berkeley Social Ontology Group, in particular John Searle, Asa Andersen, Maya
Kronfeld and Raffaela Giovagnoli for feedback on a previous draft.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PhilPapers

https://core.ac.uk/display/78839605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Exclusion Logic

in which users treat predicates such as Green(x) and Red(x) as incompatible,
but which contain no operator for general negation.

EL is a logic which respects this alternative direction of explanation. It uses
the exclusion operator “.” to express materially-incompatible propositions with-
out the need for an explicit negation operator and non-logical axioms.

1.2 Syntax

Definition 1. Given a set S of symbols, the expressions in EL are defined as
all terms of type G in:

X ::= S | S:X | S.X
E ::= X | E ∧ E
G ::= E | E → E

The language is carefully stratified: terms are assembled into conjunctions, which
are then combined into implications. In this way, it resembles disjunctive normal
form. Note that → is not recursively embeddable: although P → Q is well-
formed, P → Q→ R is not.

Remark 1. The only unusual feature of this simple language is the use of two
binary modal operators, ‘.’ and ‘:’, to build up trees of information. Asserting
that A:B is claiming both that A, and that one of the ways in which A is B.
Saying that A.B, by contrast, is to say that B is the only way in which A is the
case.

Terms Explanation

WhoseMove.Black It is Black to move
Agents:Jack:Age.37 One of the agents is Jack, and his age is 37
Agents.Jack:Age.38 Jack is the only agent, and his age is 38
Wolf:Class.Mammalia.Theria The wolf is of class Mammalia and sub-class Theria

Fig. 1: Examples of expressions in L

Both A:B and A.B imply that B is a way in which A is true. But A:B and
A:C are compatible terms, whereas A.B excludes other values of A, such as A.C.

1.3 Expressive Impoverishment

At first glance, EL looks like a very impoverished logic indeed, hardly deserving
of the name. How can we live without operators for negation and disjunction?
Although Exclusion Logic does not contain these operators, it has resources for
expressing some of what we want to say when we use them.

Exclusion Logic 3

WhoseMove.Black WhoseMove.White

Agents:Jack Agents.Jill

Agents:Jack:Age.37 Agents:Jack:Age.38

Wolf:Class.Mammalia.Theria Wolf:Class.Gastropoda

Fig. 2: Pairs of incompatible expressions

Incompatibility and Negation in EL When we say ¬P , we are saying some-
thing which is incompatible with P . But not just any claim which is incompatible
with P : ¬P is the least contentful claim which is incompatible with P . If we see
entailment as a partial ordering such that P ≤ Q if P entails Q, then P is the
upper bound of all the claims which are incompatible with P . If we sort claims
by vagueness, ¬P is the vaguest claim which is incompatible with P .

Suppose someone claims that the flag is red. Now we can make an incom-
patible claim by saying that the flag is green, or that it is blue, etc. These are
all specific information-heavy ways of denying that the flag is red. If we want to
say something which is incompatible with the flag being red, but want to give
away as little as possible, then we will just say that the flag is not red. EL has
the resources for making a specific incompatible claim: given A.B, we can make
an incompatible claim by saying A.C or A.D. It just doesn’t have the resources
for making the least contentful incompatible claim for any arbitrary complex
expression.

We also have the ability in EL to express negation directly using →. As
long as EL contains at least two symbols A and B, we can define an explicit
contradiction ⊥ as A.A∧A.B. Now define ¬P as P → ⊥. However, although we
can express the negation of a simple term such as P or P.X, there is no way to
express the negation of a complex term such as P ∧Q or P → Q, because → is
not recursively embeddable.

Disjunction in EL P ∨ Q is the most specific of the claims which is entailed
by P and by Q. If we see entailment as a partial ordering, then P ∨ Q is the
least upper bound of P and Q.

Now certain pairs of expressions in EL have a corresponding least upper
bound. For example, the least upper bound of A.B and A.C is A.

But even if they both can serve the same role, A is not the same as A.B∨A.C.
The difference is that A.D ≤ A for all D, but we do not have A.D ≤ A.B ∨
A.C. Nevertheless, even though they have different inferential consequences, both
A.B ∨A.C and A fulfil the role of being the least upper bound of A.B and A.C.

1.4 EL and the Sheffer Stroke

By using the exclusion operator “.”, EL allows us to make two claims P.Q and
P.R which cannot both be true. Now this is reminiscent of the Sheffer stroke,
a binary operator |, which allows us, by saying Q|R, to say that Q and R are
incompatible - they cannot both be true.

4 Exclusion Logic

But there is an important difference: in EL, we can make claims P.Q and
P.R which are incompatible, but we cannot say that they are incompatible
within EL itself. EL is explicitatively impoverished. Although we can see, using
the semantics of “.”, that P.Q and P.R are incompatible, this fact cannot be
expressed in EL.

1.5 Semantics

An expression in EL will be interpreted in a lattice of labeled rooted trees. In a
labeled rooted tree (hereafter, LRT), each vertex is labeled with a symbol from
S, and each edge is labeled with either ‘∗’ or ‘!’. If the edge from X to Y is
labeled with ∗, it means that Y is one of the children of X - but X may have
other children also. But if the edge is labeled with !, it means that Y is the only
child of X.

Definition 2. An LRT is a directed tree with a vertex- and an edge-labeling.
Formally, an LRT is a tuple (V,E,L,M,R) where:

– V is a set of vertices

– E is a set of edges

– L contains the vertex labels; it is a total function from V to the set of symbols
S

– M contains the edge labels; it is a total function from E to {∗, !}
– R ∈ V is the vertex for the root of the tree, where L(R) = T (here, T is a

symbol not occurring in S used to label the root of each tree).

Each element of the tuple yields a corresponding accessor function. Given an
LRT X, VX is the vertices of X, EX is the edges of X, LX is the vertex-labels
of X, MX is the edge-labels of X, and RX is the root vertex of X. Additionally,
define E∗X as the transitive closure of EX .

Definition 3. Not all sets of vertices and edges form a valid labeled rooted tree.
An LRT is valid iff it is :

– acyclic: there are no undirected cycles

– connected: every vertex can be reached from every other via undirected links

– irredundant: no two children of a vertex share the same label

– respectful of exclusion: if M((x, y)) = ! then there are no other edges (x, z) ∈
E for some z 6= y

Valid LRTs In these examples, the ∗ labels have been suppressed. Note that
two vertices may share the same label.

Exclusion Logic 5

T

A

T

B

!

T

A B

T

A

A

T

A B

C D A

!

Fig. 3: Valid LRTs

Defining ≤ on LRTs We are going to interpret expressions in a lattice of
LRTs. So we start with a partial ordering on LRTs. We will say A ≤ B if A
contains at least as much information as B - if B is a subgraph of A which has
the same root.

Now it might seem more natural to define A ≤ B if A is a subgraph of B. But
we want to preserve the semantic convention that X entails Y iff [[X]] ≤ [[Y]],
and the corresponding idea that [[X ∧ Y]] is the greatest lower bound of [[X]]
and [[Y]].

We will define a partial ordering ≤ on LRTs using subgraph isomorphism.
We introduce the concept of the signature of a vertex, and say that two vertices
from two different graphs are equivalent if they share the same signature.

Definition 4. The signature sX(v) of a vertex v in LRT X is the ordered list
of vertex symbols associated with the path from RX to v. Because the LRT is a
tree, each vertex has only one path from RX . (Recall that RX is the root of X).

Definition 5. Vertex v in X and vertex v′ in Y are equivalent, written (X, v) ≡
(Y, v′), iff sX(v) = sY (v′). Edges are equivalent if both vertices are equivalent.

Definition 6. A ≤ B iff every edge in B has a corresponding edge in A, and
edge-labels of A are at least as specific as the labels in B.

A ≤ B iff ∀e ∈ EB ∃e′ ∈ EA (A, e′) ≡ (B, e) ∧MA(e′) ≤MB(e)

(Recall that EX is the set of edges of X, and MX is the set of edge-labels of X).
We define ≤ over {∗, !} as the least partial-order on {∗, !} which satisfies ! ≤ ∗.
Note that it is possible for A ≤ B even if A and B have different labels on the
same edge, as long as the label on A’s edge is more specific than B’s label for
the corresponding edge.

6 Exclusion Logic

Examples of ≤ Here, again, the ∗ labels have been omitted from the diagram
to reduce clutter.

T

A

T≤

And:

T

A B

T

A

≤

In this example, the LRTs have different labels, but one is more specific than
the other:

T

A

!

T

A

≤

Proposition 1. ≤ is a partial-ordering.

Incompatibility Two LRTs are incompatible if they share a path of labeled
vertices but diverge at the end of that path, with different labels, and one or
both have an exclusive label (!) on the vertex prior to the divergence.

Definition 7. LRTs A and B are incompatible iff ∃(x, y) ∈ EA, ∃(x′, y′) ∈
EB such that:

sA(x) = sB(x′) ∧
sA(y) 6= sB(y′) ∧

MA((x, y)) = ! ∨ MB((x′, y′)) = !

Exclusion Logic 7

T

A

T

B

!

Fig. 4: Incompatible LRTs

T

A B

C D A

!

T

A B

C D B

Fig. 5: Incompatible LRTs

Proposition 2. Incompatibility is symmetric and irreflexive.

Proposition 3. Incompatibility is not transitive.

Proof. The simplest example which shows this is:

T

A

T

B

!

T

C

(a) (b) (c)

Fig. 6: Incompatibility is not transitive

Here, (a) is incompatible with (b) and (b) is incompatible with (c), but (a)
is not incompatible with (c).

LRTs form a lattice We will use LRTs to model expressions in EL, and u
(greatest-lower-bound) to model conjunctions of expressions. So we need some
sort of LRT to model incompatible conjunctions of expressions. We add ⊥ to
our set of LRTs to model incompatible conjunctions and stipulate that for all X

⊥ ≤ X

8 Exclusion Logic

Similarly, the lattice needs a top element > such that for all X, X ≤ >. We
define > as

({1}, {}, {(1, T)}, {}, 1)

Now, with these elements in place, we are ready to define greatest lower bound.

Definition 8. For any LRTs X and Y , define X u Y as ⊥ if X and Y are
incompatible; otherwise:

(VX ∪ VY ′ , EX ∪ EY ′ , LX ∪ LY ′ ,min≤(MX ∪MY ′), RX)

where

min≤(X) = {(E,m) ∈ X|m =! ∨ (E, !) /∈ X}

and Y ′ is a renaming of the vertices of Y such that sX(v) = sY ′(v′) iff v = v′.

T

A

T

B

T

A B

u =

Fig. 7: Example of u

T

A

!

T

B

⊥u =

Fig. 8: Example of u

Exclusion Logic 9

T

A

!

B

T

A

!

C

D

T

A

!

B C

D

u =

Fig. 9: Example of u

Proposition 4. X u Y as defined is indeed the greatest lower bound.

Definition 9. For any LRTs X and Y , the least upper bound X t Y is

(VX ∩ V ′Y , EX ∩ E′Y , LX ∩ L′Y ,max≤(MX ,MY), RX)

where

max≤(X,Y) = {(E, !) | (E, !) ∈ X ∧ (E, !) ∈ Y } ∪
{(E, ∗) | ((E, ∗) ∈ X ∧ (E, ∗) ∈ Y)

∨((E, ∗) ∈ X ∧ (E, !) ∈ Y)

∨((E, !) ∈ X ∧ (E, ∗) ∈ Y)}

and Y ’ is a renaming of the vertices of Y , as before.

T

A

T

B

Tt =

Fig. 10: Example of t

T

A

!

T

A

T

A

t =

Fig. 11: Example of t

10 Exclusion Logic

Proposition 5. Given a set P of objects, the partial order (LRT (P)∪⊥,≤) is
a bounded lattice with top >, bottom ⊥, greatest lower bound u and least upper
bound t.

Defining satisfaction of an expression by an LRT

Definition 10. We define the conditions for an expression e to be true in an
LRT X, written |=X e.

– |=⊥ E, for all expressions E
– |=X E iff Sat(X,RX , ∗, E)

The satisfaction of a term E in a model X, given a vertex v and a label L,
written Sat(X, v, L,E), is defined as:

Sat(X, v, L, S) iff ∃v′ : (v, v′) ∈ EX

LX(v′) = S and

MX(v, v′) ≤ L
Sat(X, v, L, S.E) iff ∃v′ : (v, v′) ∈ EX

LX(v′) = S

MX(v, v′) ≤ L and

Sat(X, v′, !, E)

Sat(X, v, L, S:E) iff ∃v′ : (v, v′) ∈ EX

LX(v′) = S and

MX(v, v′) ≤ L and

Sat(X, v′, ∗, E)

Sat(X, v, L,A ∧B) iff Sat(X, v, L,A) and Sat(X, v, L,B)

Sat(X, v, L,A→ B) iff (∀v′ | (v, v′) ∈ E∗X)

¬Sat(X, v′, L,A) or

Sat(X, v′, L,B)

Recall that E∗X is the transitive closure of EX .

The conditional of EL is stricter than material implication An impli-
cation p→ q is only true at a vertex in a LRT if the material implication holds
at every vertex below. (In this respect, → resembles Lewis’ strict implication
in that its interpretation requires quantifying over a set of points, rather than
being interpreted at just one point). The following is not valid:

A.B 2 A.C → Z

The following model satisfies A.B but does not satisfy A.C → Z:

Exclusion Logic 11

T

A D

B A

C

In a sense, implication in EL is intermediate between material implication
and strict implication. With material implication, we only look at one piece of
information to determine the truth of the conditional. With strict implication,
we look at information from lots of different worlds to determine the truth of the
conditional. But in EL, we look at lots of pieces of information from one world.

Validity and Entailment We define validity and entailment in the usual way.

Definition 11. Define Y is valid, written |= Y , if Y is true in all models.

Definition 12. We say X entails Y , written X |= Y , if every model which
satisfies the set of judgments X also satisfies Y .

Valid Invalid

X.Y → X X.Y → Y
X :Y → X X :Y → Y
X.Y ∧X.Z → A X :Y ∧X :Z → A
X.Y → X :Y X :Y → X.Y

Fig. 12: Some valid and invalid expressions in L

1.6 Decision Procedure

We will use the lattice of LRTs defined above to provide an efficient decision
procedure. We will interpret an expression by the

⊔
of the LRTs which satisfy

it.

Definition 13. Define [x] as the set of LRTs which satisfy x:

[x] = {M | |=M x}

12 Exclusion Logic

Note that there are an infinite number of LRTs which satisfy an expression. Now
because the LRTs form a lattice, [x] has a least upper bound

⊔
. We can use this

least upper bound to calculate entailment directly.

Proposition 6.

X |= Y iff ∀M |=M X ⇒|=M Y

iff [X] ⊆ [Y]

iff
⊔

[X] ≤
⊔

[Y]

Next, we will provide a direct way of computing
⊔

[X]. This will give us
a direct and efficient way of determining if Y is entailed by X: look to see if⊔

[X] ≤
⊔

[Y]. Instead of having to verify all the models of X to see if Y is true,
we just look in one canonical model.

Computing
⊔

[X] directly We will define a particular model m(X), and then
show that m is indeed the minimal model: m(X) =

⊔
[X]. Note that the expres-

sions in L can be divided into two groups: the conjunctions and the implications.

Definition 14. First we will define m(X) for the fragment of L that doesn’t
include implications.

– m(T) = > = ({1}, {}, {(1, T)}, {}, 1)
– m(A ∧B) = m(A) um(B)
– m(A:B) = (Vm(A)∪{v}, Em(A)∪{(v′, v)}, Lm(A)∪(v,B),Mm(A)∪{((v′, v), ∗)})
– m(A.B) = (Vm(A)∪{v}, Em(A)∪{(v′, v)}, Lm(A)∪(v,B),Mm(A)∪{((v′, v), !)})

Here, v is a new vertex not occurring in m(A) which is used to interpret B, and
v′ is the vertex which m(A) uses to interpret A i.e. the v′ such that sm(A)(v

′) =
symbols(A). Here, symbols(A) is the ordered-list of symbols appearing in A. E.g.
symbols(A : B.C) = (A,B,C).

Definition 15. We extend m from individual expressions to sets of expressions:

m(X) = u{m(e) | e ∈ X}

Definition 16. We extend m to include implications. First, divide a set X of
expressions into the conjunctions A and the implications G. We will interpret G
as a function, and interpret m(G,A) as the result of repeatedly applying m(G)
to m(A). Define m(X → Y) as the pair of LRTs (m(X),m(Y)). Next we will
define the evaluation e of a pair (A,B) of LRTs to an LRT. The evaluation
function e has signature LRT × LRT → LRT → LRT and is defined as:

e(A,B)(X) =

{
B uX ifX ≤ A
X otherwise

Exclusion Logic 13

Definition 17. We extend e to operate on sets of pairs in the natural way:
Define e’ as:

e′ : 2LRT×LRT → LRT → LRT

e′ G X = u{e(h,X) | h ∈ G}

Definition 18. We define m(G,A) to be the least-specific model which is closed
under the application of e′ on m(G) over m(A):

m(G,A) =
⊔
{X|X ≤ e′(m(G),m(A)) ∧ e′(m(G),m(X)) = m(X)}

Proposition 7. m(X) =
⊔

[X] for all sets of expressions X.

The Complexity of the Decision Procedure We determine whether G,A |=
X by checking whether m(G,A) ≤ m(X). Assume G is a set of judgments of size
n, and A and X are individual conjunctive judgments. Assume the max number
of conjunctions in G,A,X is m, and the max complexity of any conjunct is k.
Repeatedly applying λz.e′(m(G), z) to m(A) takes of order n3m2k2 operations.
Determining whether m(G,A) ≤ m(X) involves comparing each vertex of m(X)
with every vertex in m(G,A). The size of m(G,A) is bounded by (n + 1)mk,
hence computing ≤ is of order nm2k2 operations. So, as we would expect, the
restricted structure of EL means that testing entailment is polynomial-time and
practically efficient.

2 Using Exclusion Logic as a Deontic Logic

Deontic Exclusion Logic, hereafter DEL, is a particular application of Exclusion
Logic.

2.1 Motivation

The design of DEL was driven by the desire to avoid some of the unintuitive
consequences of Standard Deontic Logic (hereafter SDL). SDL is a reinterpre-
tation of the modal logic K +D in which �P is interpreted as “It is obligatory
that P”. The syntax of SDL is given by:

L ::= P | �L where P is the set of all propositional formulae

SDL is interpreted in the usual Kripke semantics with a serial accessibility rela-
tion. So the following are valid:

|= �(p ∨ ¬p)
|= �(p→ p)

We are obligated to make it the case that tautologies hold! This seems a heavy
burden indeed. Further, in SDL we have the entailment:

�(p) |= �(p ∨ q)

14 Exclusion Logic

This hold for any proposition q, no matter how unsavoury!

The problem here is at the root, with the very sentences that SDL allows
as syntactically acceptable. Just because a formal language accepts a certain
sentence, it doesn’t mean that we can do anything with it - that we can make it
mean anything. When the � operator is interpreted deontically, it is not clear
what sense to make of �(p∨q) or �(p→ q). These are not formalized versions of
expressions which are antecedently intelligible. It is rather that they are forced
on us by the syntactic machinery of SDL, and we don’t know what to do with
them.

Philosophers are often like little children who scribble some marks on
a piece of paper and then ask the grown-up “What does this mean?”
[Wittgenstein, Culture and Value, p. 17]

Von Wright originally had a formalism which was much more syntactically re-
stricted. In this earlier version, the deontic operator was applied to actions, not
to sentences. This meant that it was impossible to express �(p∨q), �(p→ q), or
�(�(p)). DEL, like von Wright’s original deontic language, is highly syntactically
restricted in order to avoid problem cases where syntax outstrips understanding.

2.2 Syntax

Given a set S of symbols, the expressions in DEL are defined as the terms G in:

X ::= S | S:X | S.X | �X
E ::= X | E ∧ E
G ::= E | E → E

In DEL, like SDL, the intended meaning of �P is that P should be the case.

Well-Formed Ill-Formed

�A ∧�B �(A ∧B)
A→ �B �(A→ B)
��A

Fig. 13: Well-formed and ill-formed expressions in DEL

Note that DEL’s operators are carefully stratified. Unlike SDL, DEL does not
tolerate � outside a conditional or conjunction. The reason for these restrictions
is that in DEL, �P is just syntactic sugar for Ob : P . Here, Ob is just a constant
of EL, suggestively chosen to evoke the intended interpretation of obligation. We
will see in the next section why it is permissible to interpret Ob deontically.

Exclusion Logic 15

2.3 Interpreting �: DEL as a Minimal Deontic Logic

For a logic to qualify as a deontic logic, it must respect our intuitions about how
the Obligatory operator behaves. These intuitions include, at the very least:

1. Closure under strict implication. Any model in which P strictly-implies Q
and �P must also satisfy �Q

2. No incompatible deontic judgments. If P and Q are incompatible proposi-
tions, there is no model which satisfies �P ∧�Q

3. What ought to be the case does not collapse into what is the case. Deontic
judgments can remain unsatisfied. �P 2 P

In SDL, these requirements are satisfied because the accessibility relation is
serial but not reflexive.

In DEL, �P is just syntactic sugar for Ob : P . There are no changes whatso-
ever to the semantics to incorporate this syntactic extension. But the semantics
of EL already respect the three minimal requirements on a deontic logic listed
above:

1. Closure under strict implication. In EL, the satisfaction condition for →
means that P → Q,�P |= �Q

2. No incompatible deontic judgments. In EL, the satisfaction condition for
P ∧ Q is defined so that if P and Q are incompatible propositions, there is
no model which satisfies �P ∧�Q

3. What ought to be the case does not collapse into what is the case. Deontic
judgments can remain unsatisfied. In EL, �P 2 P

Now these conditions allow us to interpret �P as “It is obligatory that P”, but
they do not force us to interpret it that way. Just as there are other interpreta-
tions of K + D in which � is interpreted in some way other than by a deontic
operator, just so there are other interpretations of DEL in which � is interpreted
otherwise. But satisfying the conditions above means that � can be interpreted
deontically. Hence DEL is a minimal deontic logic.

2.4 Comparison with SDL

The deontic logic literature contains many types of case which SDL finds prob-
lematic for one reason or another. We will briefly review some of these cases in
order to see how DEL handles them.

Example 1 (Tautologies are obligatory). Because SDL is a normal modal logic,
if P is a tautology, then |= �P . DEL does not have this bizarre consequence.
The only tautologies in DEL are implications (e.g. A.B → A). But the stratified
syntax of DEL restricts the � operator from being applied to implications. So
there are no tautologies in DEL which can be embedded inside �.

16 Exclusion Logic

Example 2 (Ross’ paradox). In SDL, the following holds:

�P |= �(P ∨Q)

Let P = “You mail the letter” and Q = “You burn it”. Then it is an unfortunate
consequence that if you ought to mail the letter, then you ought to mail it or
burn it.

DEL handles this case in the simplest way, by disallowing any boolean op-
erations within the scope of the deontic operator. But even if we added ∨ to
DEL, it still wouldn’t allow �(P ∨Q), because the operators in DEL are care-
fully stratified : the deontic operator only applies to simple terms, not to complex
expressions involving the logical operators.

Example 3 (Chisholm’s puzzle). Chisholm’s puzzle involves the following claims:

1. Jones should go to the assistance of his neighbors.
2. If Jones goes, then he should tell them he is coming
3. If Jones doesn’t go, then he shouldn’t tell them he is coming
4. Jones doesn’t go to assist his neighbors

Intuitively, the four claims are consistent and independent. The problem for SDL
stems from how to interpret (2) as to preserve both consistency and indepen-
dence. If we interpret it as �(P → Q), then we can derive both that he should
and shouldn’t go to the assistance of his neighbors. But if, to take the other horn
of the dilemma, we interpret it as P → �Q, then as the→ of SDL is material im-
plication, (2) follows immediately from (4). This alternative interpretation seems
more natural, but as long as we interpret → as material implication, we have
lost our original intuition that the four propositions are logically independent.

DEL handles this dilemma naturally. The four claims are represented as
follows:

1. > → � Go.True
2. Go.True→ � Tell.T rue
3. Go.False→ � Tell.False
4. Go.False

Here, we are using P.True and P.False as ways of asserting P and ¬P respec-
tively.

Of the two interpretations of (2) available to SDL, only one is available to
DEL because DEL’s syntax is stratified to prevent deontic operators having
wider scope than logical operators. �(P → Q) is not allowed, so DEL uses
P → �Q. But implication in DEL is stronger than material implication. Recall
that → is interpreted in DEL as:

Sat(X, v, L,A→ B) iff (∀v′ | (v, v′) ∈ E∗X)

¬Sat(X, v′, L,A) or

Sat(X, v′, L,B)

Exclusion Logic 17

With this stronger interpretation of implication, A.B 2 A.C → Z, and the
troubling inference from (4) to (2) does not go through.

It follows from these claims that both �� Tell.T rue and � Tell.False. These
claims are compatible. �� Tell.T rue is the important conclusion that ideally, if
events had unfolded as they should have done, then Jones should have told his
neighbors.

2.5 Comparison with von Wright and Castañeda

In von Wright’s original deontic logic [9], the deontic operator is applied to
action-types, not propositions. This meant his operator could not be iterated,
and could not be applied to complex logical sentences (because the operator
does not apply to sentences at all). Castañeda proposed a similar syntactically
restricted approach [5], distinguishing propositions from practitions.

��P �(P → Q)

SDL Yes Yes
DEL Yes No

von Wright No No

Fig. 14: Syntactic Restrictions

DEL allows iterated application of �, but does not allow � to be applied to
conditionals. In this respect, it occupies a respectable middle-ground between the
confining syntactic restrictions of von Wright’s system, and the anything-goes
syntactic free-for-all of SDL.

3 Computational Implementation

DEL has been used to power a multi-agent simulation. A number of different
social practices were modeled in DEL, including a turn-taking game, manifest-
ing social status, queuing up, and the notion of taboo activity. In these initial
experiments, DEL was found to be an expressive and intuitive language for rep-
resenting social practices declaratively.

4 Summary

This paper has introduced yet another formal language for the representation of
norms. One thing that distinguishes this particular formalism is its simplicity:
its eschewal of negation or disjunction means that it has an efficient decision
procedure.

18 Exclusion Logic

References

1. Alchourron, C., and D.Makinson: Hierarchies of Regulations and their Logic. New
Studies in Deontic Logic. D. Reidel, Dordrecht, pp. 125-48 (1981)

2. Boella, G., van der Torre, L.: Permissions and Obligations in Hierarchical Normative
Systems. Proc. of ICAIL (2003)

3. Brandom, R.: Making It Explicit. Harvard University Press (1994)
4. Brandom, R.: Between Saying and Doing. Oxford University Press (2008)
5. Castañeda, H.: The Paradoxes of Deontic Logic. New Studies in Deontic Logic. D

Reidel (1981)
6. Evans, R.: The Logical Form of Status-Function Declarations. Etica & Politica,

vol.XI, pp.203-259 (2009)
7. Makinson, D., van der Torre, L.: Input/Output Logics. Journal of Philosophical

Logic, vol.29, pp. 383-408 (2000)
8. Makinson, D., van der Torre, L.: Permission from an Input/Output Perspective.

Journal of Philosophical Logic, vol.32, pp. 391-416 (2003)
9. von Wright, G.H.: Deontic Logic. Mind, vol.60 (1951)
10. von Wright, G.H.: An Essay in Modal Logic. New York Humanities Press (1953)

