2 research outputs found

    The autocrine role of tumor necrosis factor in the proliferation and functional differentiation of human lymphokine-activated T killer cells (T-LAK) in vitro

    Full text link
    The autocrine role of tumor necrosis factor alpha (TNF) in the proliferation and functional differentiation of human lymphokine-activated T-killer cells (T-LAK) in vitro was investigated. Human peripheral blood lymphocytes initially stimulated with IL-2 and phytohemagglutinin-P (PHA) for 48 h will proliferate for long periods in vitro in the presence of IL-2. These T-LAK cells have been shown to be 95% CD3 positive. Employing ELISA techniques, greater than 500 pg/ml of TNF was found to be released in the supernatants of these cells during the first 5 days of culture. However, the levels dropped to 100-200 pg/ml by days 7-10. T-LAK cells grown from days 7 to 10 in the presence of IL-2 and rabbit anti-TNF were significantly growth inhibited (up to 23%). The cytolytic activity of T-LAK cells grown from days 0 to 7 in the presence of anti-TNF was also decreased (up to 75%). Phenotypic analysis of these anti-TNF treated T-LAK cells revealed a decrease in CD8 expression (up to 12%) and increase in CD4 expression (up to 27%) when compared with control cells. The data suggest that TNF has a regulatory role in the growth and functional differentiation of these human T-LAK cells
    corecore