13 research outputs found

    H2 production via ammonia decomposition in a catalytic membrane reactor

    Get PDF
    The membrane reactor is proposed in this work as a system with high potential to efficiently recover the hydrogen (H2) stored in ammonia (NH3), which has been recently proposed as an alternative for H2 storage. With this technology, NH3 decomposition and high-purity H2 separation are simultaneously performed within the same unit, and high H2 separation efficiency is achieved at lower temperature compared to conventional systems, leading to energetic and economic benefits. NH3 decomposition was experimentally performed in a Pd-based membrane reactor over a Ru-based catalyst and the performance of the conventional packed bed reactor were used as benchmark for a comparison. The results demonstrate that the introduction of a membrane in a conventional reactor enhances its performance and allows to achieve conversion higher than the thermodynamic equilibrium conversion for sufficiently high temperatures. For temperatures from and above 425 °C, full NH3 conversion was achieved and more than 86% of H2 fed to the system as ammonia was recovered with a purity of 99.998%. The application of vacuum at the membrane permeate side leads to higher H2 recovery and NH3 conversions beyond thermodynamic restrictions. On the other hand, the reactor feed flow rate and operating pressure have not shown major impacts on NH3 conversion.This project receives support from the European Union’s Horizon 2020 research and innovation under grant agreement No. 862482 (ARENHA project)

    Ammonia based CO2 capture process using hollow fiber membrane contactors

    Get PDF
    Due to its low regeneration energy demands relative to MEA, ammonia is one of the most attractive solvents for post-combustion CO2 capture processes. Nevertheless, additionally to a lower kinetic constant, a high ammonia slip takes place when the absorption process is performed in a packed column. In this study, the feasibility of an ammonia based CO2 capture process using hollow fiber membrane contactors is investigated. CO2 absorption experiments in ammonia have been performed with porous polypropylene membranes (Oxyphan) and with two different dense skin composite hollow fibers: tailor made (Teflon AF2400) and commercial (TPX). It is shown that microporous membranes do not offer stable performances, due to salt precipitation and pore blocking. Contrarily however, dense skin membranes show stable and attracting performances, whatever the operating conditions: reduced ammonia slip and intensified CO2 mass transfer are obtained compared to packed column. The potentialities of dense skin membrane contactors, particularly based on fluorinated polymers, are discussed with regard to both increased CO2 mass transfer performances and mitigation of ammonia volatilization compared to conventional gas/liquid contactors

    Hydrogen storage in liquid hydrogen carriers: recent activities and new trends

    Get PDF
    Efficient storage of hydrogen is one of the biggest challenges towards a potential hydrogen economy. Hydrogen storage in liquid carriers is an attractive alternative to compression or liquefaction at low temperatures. Liquid carriers can be stored cost-effectively and transportation and distribution can be integrated into existing infrastructures. The development of efficient liquid carriers is part of the work of the International Energy Agency Task 40: Hydrogen-Based Energy Storage. Here, we report the state-of-the-art for ammonia and closed CO2-cycle methanol-based storage options as well for liquid organic hydrogen carriers

    Étude expĂ©rimentale et modĂ©lisation d'un procĂ©dĂ© de captage en CO2 en postcombustion par l'ammoniaque Ă  l'aide de contacteurs membranaires: du matĂ©riau Ă  l'Ă©valuation de l'intensification de l'absorption

    No full text
    Aqueous ammonia as a solvent for post-combustion CO2 capture in a packed column is seen as a promising technology. Nevertheless, ammonia volatility is a considerable drawback for its large scale deployment. In this study, the ability of hollow fiber membrane contactors to significantly improve CO2 mass transfer performances while mitigating ammonia losses when compared to packed column is evaluated. In that purpose, the use of innovating composite fibers made of a thin dense layer selective for CO2 over NH3 is proposed. Up to now, a faster permeation of CO2 compared to NH3 in dense polymers was totally unexpected and to our knowledge unexplored. Time-lag experiments have revealed a series of 6 fluorinated structures showing the desired reverse selectivity properties. Teflon AF2400 has been selected as the dense skin of composite fibers used during absorption experiments. Their performances have been compared, for different operating conditions, to those given by commercial microporous (Oxyphan) and composite (Oxyplus) membrane contactors. Due to ammonium salt precipitation issues, no stable experiment has been achieved using microporous membrane contactors. At the opposite, absorption efficiencies higher than post-combustion capture standards have been reached using composite membrane contactors. 2D mass transfer modeling has revealed the controlling role of the microporous support in the observed absorption performances. Finally, high CO2 mass transfer intensification factor and drastically reduced ammonia losses have been shownL'absorption du CO2 Ă  l'ammoniaque au sein d'une colonne garnie est une technologie prometteuse pour capter le CO2 en postcombustion. La fuite d'NH3 engendrĂ©e par la volatilitĂ© de ce solvant gĂȘne nĂ©anmoins le dĂ©ploiement de ce procĂ©dĂ©. Dans cette Ă©tude, la facultĂ© des contacteurs membranaires Ă  permettre des performances d'absorption du CO2 intensifiĂ©es et des pertes en NH3 rĂ©duites par rapport au procĂ©dĂ© conventionnel est Ă©valuĂ©e. Pour cela, l'emploi de fibres composites innovantes constituĂ©es d'une peau dense assurant un transport sĂ©lectif du CO2 vis-Ă -vis de NH3 a Ă©tĂ© proposĂ©. Compte tenu des propriĂ©tĂ©s de ces molĂ©cules, aucun matĂ©riau ne prĂ©sentait jusqu'alors de sĂ©lectivitĂ© de sĂ©paration favorable au CO2. Des essais de temps-retards ont permis de rĂ©vĂ©ler 6 matĂ©riaux fluorĂ©s prĂ©sentant les propriĂ©tĂ©s de sĂ©lectivitĂ©s inverses recherchĂ©es. Le Teflon AF2400, polymĂšre hautement permĂ©able au CO2, a Ă©tĂ© choisi pour constituer les fibres creuses composites employĂ©es lors d'expĂ©riences d'absorption. Leurs performances ont Ă©tĂ© comparĂ©es Ă  celles de contacteurs commerciaux microporeux (Oxyphan) et composites (Oxyplus) pour diffĂ©rentes conditions opĂ©ratoires. Alors qu'aucune expĂ©rience stable n'a pu ĂȘtre achevĂ©e avec les contacteurs microporeux du fait de la prĂ©cipitation de sels d'ammonium, les contacteurs composites ont permis des performances de capture supĂ©rieures aux objectifs fixĂ©s. La modĂ©lisation 2D du transfert de matiĂšre a permis de rĂ©vĂ©ler le rĂŽle prĂ©pondĂ©rant du support microporeux dans les performances d'absorption observĂ©es. Enfin, une intensification Ă©levĂ©e des performances d'absorption du CO2 et des pertes en NH3 fortement rĂ©duites par rapport au procĂ©dĂ© conventionnel ont pu ĂȘtre dĂ©montrĂ©e

    Experimental study and modeling of an ammonia based CO2 capture process using hollow fiber membrane contactors : from the material selection to the absorption intensification assessment

    No full text
    L'absorption du CO2 Ă  l'ammoniaque au sein d'une colonne garnie est une technologie prometteuse pour capter le CO2 en postcombustion. La fuite d'NH3 engendrĂ©e par la volatilitĂ© de ce solvant gĂȘne nĂ©anmoins le dĂ©ploiement de ce procĂ©dĂ©. Dans cette Ă©tude, la facultĂ© des contacteurs membranaires Ă  permettre des performances d'absorption du CO2 intensifiĂ©es et des pertes en NH3 rĂ©duites par rapport au procĂ©dĂ© conventionnel est Ă©valuĂ©e. Pour cela, l'emploi de fibres composites innovantes constituĂ©es d'une peau dense assurant un transport sĂ©lectif du CO2 vis-Ă -vis de NH3 a Ă©tĂ© proposĂ©. Compte tenu des propriĂ©tĂ©s de ces molĂ©cules, aucun matĂ©riau ne prĂ©sentait jusqu'alors de sĂ©lectivitĂ© de sĂ©paration favorable au CO2. Des essais de temps-retards ont permis de rĂ©vĂ©ler 6 matĂ©riaux fluorĂ©s prĂ©sentant les propriĂ©tĂ©s de sĂ©lectivitĂ©s inverses recherchĂ©es. Le Teflon AF2400, polymĂšre hautement permĂ©able au CO2, a Ă©tĂ© choisi pour constituer les fibres creuses composites employĂ©es lors d'expĂ©riences d'absorption. Leurs performances ont Ă©tĂ© comparĂ©es Ă  celles de contacteurs commerciaux microporeux (Oxyphan) et composites (Oxyplus) pour diffĂ©rentes conditions opĂ©ratoires. Alors qu'aucune expĂ©rience stable n'a pu ĂȘtre achevĂ©e avec les contacteurs microporeux du fait de la prĂ©cipitation de sels d'ammonium, les contacteurs composites ont permis des performances de capture supĂ©rieures aux objectifs fixĂ©s. La modĂ©lisation 2D du transfert de matiĂšre a permis de rĂ©vĂ©ler le rĂŽle prĂ©pondĂ©rant du support microporeux dans les performances d'absorption observĂ©es. Enfin, une intensification Ă©levĂ©e des performances d'absorption du CO2 et des pertes en NH3 fortement rĂ©duites par rapport au procĂ©dĂ© conventionnel ont pu ĂȘtre dĂ©montrĂ©esAqueous ammonia as a solvent for post-combustion CO2 capture in a packed column is seen as a promising technology. Nevertheless, ammonia volatility is a considerable drawback for its large scale deployment. In this study, the ability of hollow fiber membrane contactors to significantly improve CO2 mass transfer performances while mitigating ammonia losses when compared to packed column is evaluated. In that purpose, the use of innovating composite fibers made of a thin dense layer selective for CO2 over NH3 is proposed. Up to now, a faster permeation of CO2 compared to NH3 in dense polymers was totally unexpected and to our knowledge unexplored. Time-lag experiments have revealed a series of 6 fluorinated structures showing the desired reverse selectivity properties. Teflon AF2400 has been selected as the dense skin of composite fibers used during absorption experiments. Their performances have been compared, for different operating conditions, to those given by commercial microporous (Oxyphan) and composite (Oxyplus) membrane contactors. Due to ammonium salt precipitation issues, no stable experiment has been achieved using microporous membrane contactors. At the opposite, absorption efficiencies higher than post-combustion capture standards have been reached using composite membrane contactors. 2D mass transfer modeling has revealed the controlling role of the microporous support in the observed absorption performances. Finally, high CO2 mass transfer intensification factor and drastically reduced ammonia losses have been show

    Reverse selective NH3/CO2 permeation in fluorinated polymers using membrane gas separation

    No full text
    International audienceThe analysis of the process of gas and vapour permeation through dense polymers is of primary importance for packaging, controlled release and membrane separation processes. A significant amount of polymer permeability data has already been reported, especially for permanent gases, such as N-2, O-2, H-2, CH4 and CO2, although a very small amount of data is available for ammonia (NH3). In this case, the experimental results show the faster permeation of NH3 in comparison to CO2, which is in agreement with the solution diffusion model predictions. NH3 is smaller and more condensable than CO2. In this study, the solubility, diffusion coefficient and permeability of NH3, CO2 and N-2 in ten different polymers were investigated between 5 and 50 degrees C. A reverse NH3/CO2 permeation selectivity is occasionally observed for dense fluorinated polymers (PTFE, FEP, Hyflon AD and Teflon AF). This unusual behaviour is interpreted in the light of the diffusion and sorption coefficients obtained from time lag experiments which tend surprisingly to show in fluorinated polymers: a NH3/CO2 solubility selectivity systematically lower than expected by the usual correlations and, in some cases, lower diffusion coefficients for NH3 than for CO2. This peculiar result is interpreted from the differences between NH3 and CO2 interactions with fluorine atoms, similarly to the differential solubility phenomena of these two species which have previously been clearly established in fluorinated liquids

    Étude expĂ©rimentale et modĂ©lisation d'un procĂ©dĂ© de captage en CO2 en postcombustion par l'ammoniaque Ă  l'aide de contacteurs membranaires (du matĂ©riau Ă  l'Ă©valuation de l'intensification de l'absorption)

    No full text
    L'absorption du CO2 Ă  l'ammoniaque au sein d'une colonne garnie est une technologie prometteuse pour capter le CO2 en postcombustion. La fuite d'NH3 engendrĂ©e par la volatilitĂ© de ce solvant gĂȘne nĂ©anmoins le dĂ©ploiement de ce procĂ©dĂ©. Dans cette Ă©tude, la facultĂ© des contacteurs membranaires Ă  permettre des performances d'absorption du CO2 intensifiĂ©es et des pertes en NH3 rĂ©duites par rapport au procĂ©dĂ© conventionnel est Ă©valuĂ©e. Pour cela, l'emploi de fibres composites innovantes constituĂ©es d'une peau dense assurant un transport sĂ©lectif du CO2 vis-Ă -vis de NH3 a Ă©tĂ© proposĂ©. Compte tenu des propriĂ©tĂ©s de ces molĂ©cules, aucun matĂ©riau ne prĂ©sentait jusqu'alors de sĂ©lectivitĂ© de sĂ©paration favorable au CO2. Des essais de temps-retards ont permis de rĂ©vĂ©ler 6 matĂ©riaux fluorĂ©s prĂ©sentant les propriĂ©tĂ©s de sĂ©lectivitĂ©s inverses recherchĂ©es. Le Teflon AF2400, polymĂšre hautement permĂ©able au CO2, a Ă©tĂ© choisi pour constituer les fibres creuses composites employĂ©es lors d'expĂ©riences d'absorption. Leurs performances ont Ă©tĂ© comparĂ©es Ă  celles de contacteurs commerciaux microporeux (Oxyphan) et composites (Oxyplus) pour diffĂ©rentes conditions opĂ©ratoires. Alors qu'aucune expĂ©rience stable n'a pu ĂȘtre achevĂ©e avec les contacteurs microporeux du fait de la prĂ©cipitation de sels d'ammonium, les contacteurs composites ont permis des performances de capture supĂ©rieures aux objectifs fixĂ©s. La modĂ©lisation 2D du transfert de matiĂšre a permis de rĂ©vĂ©ler le rĂŽle prĂ©pondĂ©rant du support microporeux dans les performances d'absorption observĂ©es. Enfin, une intensification Ă©levĂ©e des performances d'absorption du CO2 et des pertes en NH3 fortement rĂ©duites par rapport au procĂ©dĂ© conventionnel ont pu ĂȘtre dĂ©montrĂ©esAqueous ammonia as a solvent for post-combustion CO2 capture in a packed column is seen as a promising technology. Nevertheless, ammonia volatility is a considerable drawback for its large scale deployment. In this study, the ability of hollow fiber membrane contactors to significantly improve CO2 mass transfer performances while mitigating ammonia losses when compared to packed column is evaluated. In that purpose, the use of innovating composite fibers made of a thin dense layer selective for CO2 over NH3 is proposed. Up to now, a faster permeation of CO2 compared to NH3 in dense polymers was totally unexpected and to our knowledge unexplored. Time-lag experiments have revealed a series of 6 fluorinated structures showing the desired reverse selectivity properties. Teflon AF2400 has been selected as the dense skin of composite fibers used during absorption experiments. Their performances have been compared, for different operating conditions, to those given by commercial microporous (Oxyphan) and composite (Oxyplus) membrane contactors. Due to ammonium salt precipitation issues, no stable experiment has been achieved using microporous membrane contactors. At the opposite, absorption efficiencies higher than post-combustion capture standards have been reached using composite membrane contactors. 2D mass transfer modeling has revealed the controlling role of the microporous support in the observed absorption performances. Finally, high CO2 mass transfer intensification factor and drastically reduced ammonia losses have been shownNANCY-INPL-Bib. Ă©lectronique (545479901) / SudocSudocFranceF

    L'hydrogĂšne au long cours

    No full text

    L'hydrogĂšne au long cours

    No full text
    International audienc
    corecore