9 research outputs found

    Asynchronous Gossip for Averaging and Spectral Ranking

    Full text link
    We consider two variants of the classical gossip algorithm. The first variant is a version of asynchronous stochastic approximation. We highlight a fundamental difficulty associated with the classical asynchronous gossip scheme, viz., that it may not converge to a desired average, and suggest an alternative scheme based on reinforcement learning that has guaranteed convergence to the desired average. We then discuss a potential application to a wireless network setting with simultaneous link activation constraints. The second variant is a gossip algorithm for distributed computation of the Perron-Frobenius eigenvector of a nonnegative matrix. While the first variant draws upon a reinforcement learning algorithm for an average cost controlled Markov decision problem, the second variant draws upon a reinforcement learning algorithm for risk-sensitive control. We then discuss potential applications of the second variant to ranking schemes, reputation networks, and principal component analysis.Comment: 14 pages, 7 figures. Minor revisio

    Min-Cost Bipartite Perfect Matching with Delays

    Get PDF
    In the min-cost bipartite perfect matching with delays (MBPMD) problem, requests arrive online at points of a finite metric space. Each request is either positive or negative and has to be matched to a request of opposite polarity. As opposed to traditional online matching problems, the algorithm does not have to serve requests as they arrive, and may choose to match them later at a cost. Our objective is to minimize the sum of the distances between matched pairs of requests (the connection cost) and the sum of the waiting times of the requests (the delay cost). This objective exhibits a natural tradeoff between minimizing the distances and the cost of waiting for better matches. This tradeoff appears in many real-life scenarios, notably, ride-sharing platforms. MBPMD is related to its non-bipartite variant, min-cost perfect matching with delays (MPMD), in which each request can be matched to any other request. MPMD was introduced by Emek et al. (STOC\u2716), who showed an O(log^2(n)+log(Delta))-competitive randomized algorithm on n-point metric spaces with aspect ratio Delta. Our contribution is threefold. First, we present a new lower bound construction for MPMD and MBPMD. We get a lower bound of Omega(sqrt(log(n)/log(log(n)))) on the competitive ratio of any randomized algorithm for MBPMD. For MPMD, we improve the lower bound from Omega(sqrt(log(n))) (shown by Azar et al., SODA\u2717) to Omega(log(n)/log(log(n))), thus, almost matching their upper bound of O(log(n)). Second, we adapt the algorithm of Emek et al. to the bipartite case, and provide a simplified analysis that improves the competitive ratio to O(log(n)). The key ingredient of the algorithm is an O(h)-competitive randomized algorithm for MBPMD on weighted trees of height h. Third, we provide an O(h)-competitive deterministic algorithm for MBPMD on weighted trees of height h. This algorithm is obtained by adapting the algorithm for MPMD by Azar et al. to the apparently more complicated bipartite setting

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Asynchronous Gossip for Averaging and Spectral Ranking

    No full text

    Cisco Nexus 9200 Robustness Redesign

    Get PDF
    Certain configurations of Cisco\u27s Nexus 9200 product experienced issues with bending during shipping. Two solutions were developed to eliminate this problem: an external brace that could quickly address the problem yet was expensive and unsustainable, and a redesigned chassis, which was more economical but came with a longer time to implement. Real world packaging and shipping conditions were simulated in SolidWorks and Finite Element Analysis was used to model the stresses experienced when the product is dropped. Both designs were found to significantly reduce stress in critical areas, thus reducing the chance of failure and the cost of the problem. We recommend Cisco implement the external brace to fill the time until the redesigned top of the chassis is implemented, both of these will reduce failures and slash the cost of replacing failed units
    corecore