299 research outputs found

    Revisiting the Benefits of Higher Education

    Get PDF
    The economic returns of higher education (HE) in terms of enhanced earnings are well established. The wider set of ‘non-economic benefits’ in the areas of health, generic skills and citizenship are less widely recognised. In an earlier report, we presented preliminary findings on the wider benefits, drawing on data collected at age 33 from the National Child Development Study (based on a cohort born in 1958). This report updates the earlier conclusions through new findings from a more extensive analysis involving both the 1958 cohort and the more recent 1970 British Cohort Study cohort (based on a cohort born in 1970). The current analysis incorporates more recent data collected in both cohorts in 2000 and at an older age (1958 cohort). We report findings in five major areas. First, we examine the mobility of graduates. To what extent do some parts of the country gain and lose graduates and graduate types of occupation at the expense of others? We then report findings on the ‘marginal returns’ to higher education in four domains of life: health, labour market, citizenship and values, and parenting

    Rapid synthesis of BiOBrxI1-x photocatalysts : insights to the visible-light photocatalytic activity and strong deviation from Vegard’s Law

    Get PDF
    This work was supported by the Royal Society for international collaboration grants (IE160277 and IE/CNSFC170670) and Sir John Houghton Fellowship in Jesus College at University of Oxford. ZJ appreciated the institutional GCRF fund from EPSRC and JG appreciates the EUSTICE scholarship from University of Southampton.A series of visible-light-responsive BiOBrxI1-x solid solutions were prepared by a rapid and efficient ultrasonication synthesis and applied in photodegradation of Rhodamine B in aqueous solution. The detailed characterisations showed that the lattice parameters and their band structures of the BiOBrxI1-x solid solutions significantly deviated from the well-established Vegard’s law for solid solution materials. The Mulliken electronegativity and valence band XPS analyses revealed that the substitution of Br by less electronegative iodine can simultaneously modulate the edges of conductance and valence band of the BiOBr, leading to nonlinear dependence of bandgap (Eg) on the halogen anion concentrations. Although the solid solution displayed superior RhB photodegration activity to BiOI, only Br-rich BiOBrxI1-x solid solutions (x>0.5) were more active than BiOBr and BiOI, with the optimal one is BiOBr0.75I0.25. The Br-dependence of bandstructure and photocatalytic activity for the BiOBrxI1-x solid solutions as well as their rate-limiting radical species were also clarified based on experimental and theoretical analyses.PostprintPeer reviewe

    The effect of beryllium oxide on retention in JET ITER-like wall tiles

    Get PDF
    Preliminary results investigating the microstructure, bonding and effect of beryllium oxide formation on retention in the JET ITER-like wall beryllium tiles, are presented. The tiles have been investigated by several techniques: Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray (EDX), Transmission Electron microscopy (TEM) equipped with EDX and Electron Energy Loss Spectroscopy (EELS), Raman Spectroscopy and Thermal Desorption Spectroscopy (TDS). This paper focuses on results from melted materials of the dump plate tiles in JET. From our results and the literature, it is concluded, beryllium can form micron deep oxide islands contrary to the nanometric oxides predicted under vacuum conditions. The deepest oxides analyzed were up to 2-micron thicknesses. The beryllium Deuteroxide (BeOxDy) bond was found with Raman Spectroscopy. Application of EELS confirmed the oxide presence and stoichiometry. Literature suggests these oxides form at temperatures greater than 700 °C where self-diffusion of beryllium ions through the surface oxide layer can occur. Further oxidation is made possible between oxygen plasma impurities and the beryllium ions now present at the wall surface. Under Ultra High Vacuum (UHV) nanometric Beryllium oxide layers are formed and passivate at room temperature. After continual cyclic heating (to the point of melt formation) in the presence of oxygen impurities from the plasma, oxide growth to the levels seen experimentally (approximately two microns) is proposed. This retention mechanism is not considered to contribute dramatically to overall retention in JET, due to low levels of melt formation. However, this mechanism, thought the result of operation environment and melt formation, could be of wider concern to ITER, dependent on wall temperatures.EUROfusion 63305

    Borrmann–Lehmann interference patterns in perfect and in distorted crystals

    Full text link

    Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis

    Get PDF
    The α-proteobacterium Wolbachia is probably the most prevalent, vertically transmitted symbiont on Earth. In contrast with its wide distribution in arthropods, Wolbachia is restricted to one family of animal-parasitic nematodes, the Onchocercidae. This includes filarial pathogens such as Onchocerca volvulus, the cause of human onchocerciasis, or river blindness. The symbiosis between filariae and Wolbachia is obligate, although the basis of this dependency is not fully understood. Previous studies suggested that Wolbachia may provision metabolites (e.g., haem, riboflavin, and nucleotides) and/or contribute to immune defense. Importantly, Wolbachia is restricted to somatic tissues in adult male worms, whereas females also harbor bacteria in the germline. We sought to characterize the nature of the symbiosis between Wolbachia and O. ochengi, a bovine parasite representing the closest relative of O. volvulus. First, we sequenced the complete genome of Wolbachia strain wOo, which revealed an inability to synthesize riboflavin de novo. Using RNA-seq, we also generated endobacterial transcriptomes from male soma and female germline. In the soma, transcripts for membrane transport and respiration were up-regulated, while the gonad exhibited enrichment for DNA replication and translation. The most abundant Wolbachia proteins, as determined by geLC-MS, included ligands for mammalian Toll-like receptors. Enzymes involved in nucleotide synthesis were dominant among metabolism-related proteins, whereas the haem biosynthetic pathway was poorly represented. We conclude that Wolbachia may have a mitochondrion-like function in the soma, generating ATP for its host. Moreover, the abundance of immunogenic proteins in wOo suggests a role in diverting the immune system toward an ineffective antibacterial response

    Synchrotron section topography (SST)

    Full text link

    Academic self-concept, gender and single-sex schooling

    Get PDF
    This paper assesses gender differences in academic self-concept for a cohort of children born in 1958 (the National Child Development Study). We address the question of whether attending single-sex or co-educational schools affected students’ perceptions of their own academic abilities (academic self-concept). Academic selfconcept was found to be highly gendered, even controlling for prior test scores. Boys had higher self-concepts in maths and science, and girls in English. Single-sex schooling reduced the gender gap in self-concept, while selective schooling was linked to lower academic self-concept overall

    A short motif in the N-terminal region of α-synuclein is critical for both aggregation and function

    Get PDF
    Aggregation of human α-synuclein (αSyn) is linked to Parkinson’s disease (PD) pathology. The central region of the αSyn sequence contains the non-amyloid ÎČ-component (NAC) crucial for aggregation. However, how NAC flanking regions modulate αSyn aggregation remains unclear. Using bioinformatics, mutation and NMR, we identify a 7-residue sequence, named P1 (residues 36–42), that controls αSyn aggregation. Deletion or substitution of this ‘master controller’ prevents aggregation at pH 7.5 in vitro. At lower pH, P1 synergises with a sequence containing the preNAC region (P2, residues 45–57) to prevent aggregation. Deleting P1 (ΔP1) or both P1 and P2 (ΔΔ) also prevents age-dependent αSyn aggregation and toxicity in C. elegans models and prevents αSyn-mediated vesicle fusion by altering the conformational properties of the protein when lipid bound. The results highlight the importance of a master-controller sequence motif that controls both αSyn aggregation and function—a region that could be targeted to prevent aggregation in disease
    • 

    corecore