12 research outputs found

    Substituted Lactam and Cyclic Azahemiacetals Modulate Pseudomonas aeruginosa Quorum Sensing

    Get PDF
    Quorum sensing (QS) is a population-dependent signaling process bacteria use to control multiple processes including virulence that is critical for establishing infection. The most common QS signaling molecule used by Gram-negative bacteria are acylhomoserine lactones. The development of non-native acylhomoserine lactone (AHL) ligands has emerged as a promising new strategy to inhibit QS in Gram-negative bacteria. In this work, we have synthesized a set of optically pure γ-lactams and their reduced cyclic azahemiacetal analogues, bearing the additional alkylthiomethyl substituent, and evaluated their effect on the AHL-dependent Pseudomonas aeruginosa las and rhl QS pathways. The concentration of these ligands and the simple structural modification such as the length of the alkylthio substituent has notable effect on activity. The γ-lactam derivatives with nonylthio or dodecylthio chains acted as inhibitors of las signaling with moderate potency. The cyclic azahemiacetal with shorter propylthio or hexylthio substituent was found to strongly inhibit both las and rhl signaling at higher concentrations while the propylthio analogue strongly stimulated the las QS system at lower concentrations

    HCO(3)(−) Fixation by Naturally Occurring Tufts and Pure Cultures of Thiothrix nivea

    No full text
    Naturally occurring tufts of the mixotroph Thiothrix nivea blanketed the East Everglades (Dade County, Fla.) Chekika artesian well and runoff areas. The rate of HCO(3)(−) fixation by these Thiothrix tufts was determined to be 14.0 ± 5.4 nmol of HCO(3)(−) per min per mg of dry weight, which reflected a growth rate of 5.0%/h. The addition of 10 mM glucose, ribose, acetate, or pyruvate or 0.05% Casamino Acids (Difco Laboratories, Detroit, Mich.) did not appear to alter the HCO(3)(−) fixation rate. Whereas 1 mM acetate or 10 mM lactate, ethanol, glycerol, α-ketoglutarate, succinate, fumarate, or citrate slightly stimulated HCO(3)(−) fixation, 5 to 10 mM malate inhibited HCO(3)(−) fixation by 90%. Pure Thiothrix cultures isolated from Chekika fixed HCO(3)(−) at rates as high as 29.9 ± 2.8 nmol of HCO(3)(−) per min per mg of dry weight in the presence of growth medium. Malate did not have a suppressive effect but rather slightly stimulated in vivo HCO(3)(−) fixation

    Simple electrospray mass spectrometry detection of acylhomoserine lactones

    No full text
    Simple (non-tandem) electrospray mass spectrometry (ESMS) can detect acyl homoserine lactones (AHL) in bacteriological media in picomole amounts. The chemical reactivity of AHLs and their extraction behaviour into ethyl acetate, coupled with detection in the ESMS, has shown that these lactones can be detected as the protonated pseudomolecular ions themselves as well as solvent and ammonium adducts, and as dimers, ESMS detects and identifies these molecules, utilizing simple chemical properties of AHLs. Copyright © 2005 John Wiley & Sons, Ltd

    Substituted Lactam and Cyclic Azahemiacetals Modulate Pseudomonas aeruginosa Quorum Sensing

    No full text
    Quorum sensing (QS) is a population-dependent signaling process bacteria use to control multiple processes including virulence that is critical for establishing infection. The most common QS signaling molecule used by Gram-negative bacteria are acylhomoserine lactones. The development of non-native acylhomoserine lactone (AHL) ligands has emerged as a promising new strategy to inhibit QS in Gram-negative bacteria. In this work, we have synthesized a set of optically pure γ-lactams and their reduced cyclic azahemiacetal analogues, bearing the additional alkylthiomethyl substituent, and evaluated their effect on the AHL-dependent Pseudomonas aeruginosa las and rhl QS pathways. The concentration of these ligands and the simple structural modification such as the length of the alkylthio substituent has notable effect on activity. The γ-lactam derivatives with nonylthio or dodecylthio chains acted as inhibitors of las signaling with moderate potency. The cyclic azahemiacetal with shorter propylthio or hexylthio substituent was found to strongly inhibit both las and rhl signaling at higher concentrations while the propylthio analogue strongly stimulated the las QS system at lower concentrations
    corecore