1,054 research outputs found

    A next-generation inverse-geometry spallation-driven ultracold neutron source

    Full text link
    The physics model of a next-generation spallation-driven high-current ultracold neutron (UCN) source capable of delivering an extracted UCN rate of around an-order-of-magnitude higher than the strongest proposed sources, and around three-orders-of-magnitude higher than existing sources, is presented. This UCN-current-optimized source would dramatically improve cutting-edge UCN measurements that are currently statistically limited. A novel "Inverse Geometry" design is used with 40 L of superfluid 4^4He (He-II), which acts as a converter of cold neutrons (CNs) to UCNs, cooled with state-of-the-art sub-cooled cryogenic technology to \sim1.6 K. Our design is optimized for a 100 W maximum heat load constraint on the He-II and its vessel. In our geometry, the spallation target is wrapped symmetrically around the UCN converter to permit raster scanning the proton beam over a relatively large volume of tungsten spallation target to reduce the demand on the cooling requirements, which makes it reasonable to assume that water edge-cooling only is sufficient. Our design is refined in several steps to reach PUCN=2.1×109/P_{UCN}=2.1\times10^9\,/s under our other restriction of 1 MW maximum available proton beam power. We then study effects of the He-II scattering kernel as well as reductions in PUCNP_{UCN} due to pressurization to reach PUCN=1.8×109/P_{UCN}=1.8\times10^9\,/s. Finally, we provide a design for the UCN extraction system that takes into account the required He-II heat transport properties and implementation of a He-II containment foil that allows UCN transmission. We estimate a total useful UCN current from our source of Ruse=5×108/R_{use}=5\times10^8\,/s from a 18 cm diameter guide 5 m from the source. Under a conservative "no return" approximation, this rate can produce an extracted density of >1×104/>1\times10^4\,/cm3^3 in <<1000~L external experimental volumes with a 58^{58}Ni (335 neV) cut-off potential.Comment: Submitted to Journal of Applied Physic

    A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment

    Get PDF
    The UCNA collaboration is making a precision measurement of the β asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be ϵ(overbar) = 0.9985(4)

    Spectrum of Charged Black Holes - The Big Fix Mechanism Revisited

    Full text link
    Following an earlier suggestion of the authors(gr-qc/9607030), we use some basic properties of Euclidean black hole thermodynamics and the quantum mechanics of systems with periodic phase space coordinate to derive the discrete two-parameter area spectrum of generic charged spherically symmetric black holes in any dimension. For the Reissner-Nordstrom black hole we get A/4G=π(2n+p+1)A/4G\hbar=\pi(2n+p+1), where the integer p=0,1,2,.. gives the charge spectrum, with Q=±pQ=\pm\sqrt{\hbar p}. The quantity π(2n+1)\pi(2n+1), n=0,1,... gives a measure of the excess of the mass/energy over the critical minimum (i.e. extremal) value allowed for a given fixed charge Q. The classical critical bound cannot be saturated due to vacuum fluctuations of the horizon, so that generically extremal black holes do not appear in the physical spectrum. Consistency also requires the black hole charge to be an integer multiple of any fundamental elementary particle charge: Q=±meQ= \pm me, m=0,1,2,.... As a by-product this yields a relation between the fine structure constant and integer parameters of the black hole -- a kind of the Coleman big fix mechanism induced by black holes. In four dimensions, this relationship is e2/=p/m2e^2/\hbar=p/m^2 and requires the fine structure constant to be a rational number. Finally, we prove that the horizon area is an adiabatic invariant, as has been conjectured previously.Comment: 21 pages, Latex. 1 Section, 1 Figure added. To appear in Class. and Quant. Gravit

    Solid deuterium surface degradation at ultracold neutron sources

    Full text link
    Solid deuterium (sD_2) is used as an efficient converter to produce ultracold neutrons (UCN). It is known that the sD_2 must be sufficiently cold, of high purity and mostly in its ortho-state in order to guarantee long lifetimes of UCN in the solid from which they are extracted into vacuum. Also the UCN transparency of the bulk sD_2 material must be high because crystal inhomogeneities limit the mean free path for elastic scattering and reduce the extraction efficiency. Observations at the UCN sources at Paul Scherrer Institute and at Los Alamos National Laboratory consistently show a decrease of the UCN yield with time of operation after initial preparation or later treatment (`conditioning') of the sD_2. We show that, in addition to the quality of the bulk sD_2, the quality of its surface is essential. Our observations and simulations support the view that the surface is deteriorating due to a build-up of D_2 frost-layers under pulsed operation which leads to strong albedo reflections of UCN and subsequent loss. We report results of UCN yield measurements, temperature and pressure behavior of deuterium during source operation and conditioning, and UCN transport simulations. This, together with optical observations of sD_2 frost formation on initially transparent sD_2 in offline studies with pulsed heat input at the North Carolina State University UCN source results in a consistent description of the UCN yield decrease.Comment: 15 pages, 22 figures, accepted by EPJ-

    Improved Statistical Modeling of Tumor Growth and Treatment Effect in Preclinical Animal Studies with Highly Heterogeneous Responses In Vivo

    Get PDF
    Conclusions: In general, the modeling framework enables identification of such biologically significant differences in tumor growth profiles that would have gone undetected or had required considerably higher number of animals when using traditional statistical methods. Clin Cancer Res; 18(16); 4385-96. (C) 2012 AACR.</p

    A proposed measurement of the ß asymmetry in neutron decay with the Los Alamos Ultra-Cold Neutron Source

    Get PDF
    This article reviews the status of an experiment to study the neutron spin-electron angular correlation with the Los Alamos Ultra-Cold Neutron (UCN) source. The experiment will generate UCNs from a novel solid deuterium, spallation source, and polarize them in a solenoid magnetic field. The experiment spectrometer will consist of a neutron decay region in a solenoid magnetic field combined with several different detector possibilities. An electron beam and a magnetic spectrometer will provide a precise, absolute calibration for these detectors. An A-correlation measurement with a relative precision of 0.2% is expected by the end of 2002
    corecore