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Abstract
Purpose: Preclinical tumor growth experiments often result in heterogeneous datasets that include

growing, regressing, or stable growth profiles in the treatment and control groups. Such confounding

intertumor variability may mask the true treatment effects especially when less aggressive treatment

alternatives are being evaluated.

Experimental design: We developed a statistical modeling approach in which the growing and poorly

growing tumor categories were automatically detected bymeans of an expectation-maximization algorithm

coupledwithin amixed-effectsmodeling framework. The framework is implemented anddistributed as anR

package, which enables model estimation and statistical inference, as well as statistical power and precision

analyses.

Results: When applied to four tumor growth experiments, the modeling framework was shown to

(i) improve the detection of subtle treatment effects in the presence of high within-group tumor variability;

(ii) reveal hidden tumor subgroups associatedwith established or novel biomarkers, such as ERb expression
in aMCF-7 breast cancer model, which remained undetected with standard statistical analysis; (iii) provide

guidance on the selection of sufficient sample sizes and most informative treatment periods; and (iv) offer

flexibility to various cancer models, experimental designs, and treatment options. Model-based testing of

treatment effect on the tumor growth rate (or slope) was shown as particularly informative in the preclinical

assessment of treatment alternatives based on dietary interventions.

Conclusions: In general, the modeling framework enables identification of such biologically significant

differences in tumor growth profiles that would have gone undetected or had required considerably higher

numberofanimalswhenusingtraditionalstatisticalmethods.ClinCancerRes;18(16);4385–96.�2012AACR.

Introduction
Preclinical tumor growth studies using animal models

have a fundamental role in anticancer drug development.
Experimental cancer models in mice and rats include,
among others, implanting human tumor cells into immu-

nocompromised animals (xenograft models) or inducing
tumor-promoting mutations in rodents using carcinogens
such as 7,12-dimethylbenz(a)anthracene (DMBA). Regard-
less of the model type, the typical experimental design
involves dividing the animals into the treatment groups
(representing different doses or treatment combinations),
and monitoring the relative effects of the treatments on
tumor growth, in comparison with the control group (no
treatment). The tumor growth is typically measured at a
number of time intervals until the animals die, become
moribund, or reach a planned time of sacrifice (1).

Despite careful control of the experiments, the longi-
tudinal tumor growth measurements reflect multiple
sources of both biologic and experimental variation that
may severely confound the actual treatment responses.
Along with measurement noise, additional experimental
challenges include missing data points due to animal
morbidity, mortality, and quantitation limits, as well as
very aggressively growing outlying profiles. Such experi-
mental variation can be compensated to some degree by
increasing the number of animals and tumors analyzed.
However, due to economical and practical reasons, most
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experiments are still being carried out on relatively small
sample sizes including less than 10 tumors per group (1).
Moreover, even when using genetically standardized and
well-characterized animal strains, the experiments often
represent substantial between-animal variability, which
cannot be controlled simply by increasing the number of
animals. Such confounding factors often result in hidden
subgroups, which are not predefined but may associate
with divergent treatment outcomes in terms of the growth
profiles observed over the treatment period. Some tumors
may grow aggressively in a treatment group, even if the
same treatment inhibits the growth of other tumors, or
some untreated tumors do not grow well or even
completely regress in the control group (2–8).

The heterogeneous nature of the tumor growth profiles
pose severe challenges to the statisticalmodels that typically
rely on the assumption that the groups being compared are
relatively homogeneous. Many studies have used single end
points, such as tumor volume at a prespecified time point or
tumor doubling time, together with traditional statistical
tests, such as t test and ANOVA, or their nonparametric
counterparts (5–11). However, such univariate approaches
often lead to suboptimal statistical power because of their
ineffective use of the longitudinal growth patterns (1, 12).
In contrast, repeated measures and regression models use
the entire growth profiles and enable more systematic
between-group comparisons through model parameters
(1). In particular, mixed-effects models have become a
convenient approach to model various experimental fac-
tors, such as treatment effects or base levels (fixed effects)
while accounting for variation expressed by individual
animals or tumors (random effects). This model family
has successfully been used to analyze specific types of
xenograft experiments or study questions (12–17). How-
ever, further challenges remain. In particular, the conven-
tional model cannot detect subtle treatment effects in the

presence of heterogeneous responses, due to unfeasible
model estimation, resulting in skewness or multimodality
in the random effects (18).

The present work introduces a novel modeling frame-
work for in-depth statistical analysis of tumor growth
experiments in which the underlying tumor heterogeneity
ismodeled by dividing the longitudinal growthprofiles into
growing andpoorly growing categorieswithin the treatment
and control groups. The framework is based on well-estab-
lished linear mixed-effects models enabling robust estima-
tion and statistical inference of treatment effects through
parameters such as tumor growth rates (slopes) or average
tumor levels (offset). By means of such elemental para-
meters that are descriptive of both strong and more subtle
modes of tumor growth inhibition, the modeling frame-
work enables the investigator to address a rangeof questions
relevant in many practical settings, such as the degree of
dynamic treatment effect on the growth rates, the amount of
tumor heterogeneity present in the given data, and how the
experimental design should be modified to find significant
treatment effects. To promote its widespread application in
the future studies, we provide an easy-to-use R implemen-
tationwith accompanying tools formodel visualization and
diagnostics. Using 4 tumor growth experiments as applica-
tion use cases, we show here how the categorizing mixed-
effects model enables the extraction of full information
from these longitudinal profile datasets.

Materials and Methods
The model was applied to 4 tumor growth experiments,

including prostate and breast cancer mouse xenograft mod-
els, a syngeneic mammary cancer model with 4T1 mouse
mammary tumor cells, and a DMBA-induced mammary
carcinoma in the rat. These experiments represent with a
wide range of properties encountered in many treatment
settings, including various treatment options and dosages
(Table 1).Moreover, the experiments included designs with
and without a designated target size that the tumors need to
reach before treatment initiation. The designs differed also
in the number of tumors per treatment group, a parameter,
which is directly related to the power of detecting statisti-
cally significant treatment effects. Other experimental
design parameters included diverse setups for treatment
periods and sampling frequencies as well as different
response readouts such as tumor volume or area. Impor-
tantly, 3 of the 4 experiments showed different degrees of
intertumor heterogeneity in terms of evidence for within-
group growing and poorly growing categories (Supplemen-
tary Fig. S1).

DMBA-induced mammary cancer model
Anticarcinogenic activity of the diet-derived lignan

metaboline, enterolactone (ENL), was studied by apply-
ing a mammary cancer model in the rat (6) in which the
mammary tumors were induced by the use of DMBA. The
induction caused a varying number of tumors per animal
(1–5 measurable tumors) and thus the total tumor

Translational Relevance
Heterogeneous responses observed in many preclin-

ical models of cancer treatment may lead to frequent
false-negative results and therefore to ineffective trans-
lation of in vivo results to clinical trial designs. Using
various preclinical animal models, cancer cell lines, and
in silico simulations, we show here how modeling and
exploring of different categories of tumor growthprofiles
can improve statistical testing and biologic understand-
ing of treatment effects, especially when less aggressive
treatment alternatives are being evaluated. Statistical
power and precision analyses offer possibilities for fur-
ther improving the design of the experimental protocols
for preclinical assessment of cancer treatments. Taking
into account the individual characteristics already in the
preclinical stages should also help to propagate infor-
mation on the intertumor variability to the subsequent
clinical studies.
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volume per animal was used as the response readout
(Table 1). Two different dosages of ENL (1 and 10 mg/
kg per os by gavage) were introduced 9 weeks after the
DMBA induction. Each of the treatment groups included
both growing (growth profiles with positive slope) and
poorly growing (horizontal profiles near zero volume)
tumors; the lower dosage group also contained 2 outlier
profiles (Supplementary Fig. S1A). All the profiles were
used here in the statistical modeling.
Histologic classification of the tumors was carried out as

described earlier (6). Briefly, the tumor contributingmost to
the total volume per animal was considered, as it was most
often histologically analyzed and could be considered as
most representative for the animal. Some of the tumors
could not be analyzed due to issues related to tumor
suppression, volume below detection accuracy, or quality
of the sample. The histologic types of "poorly differentiat-
ed", "well differentiated", and "atrophic" included more
than one tumor and these were used in the analyses.

MCF-7 breast cancer xenograft model
MCF-7 breast cancer xenografts were grown in ovariec-

tomized athymicmice in the presence of estradiol (19). The
antitumor activity of the dietary lignan, lariciresinol (LAR),
was studied by applying 2 different dosages (20 or 100 mg/
kg per osby gavage) of the compound, and the tumor growth
was compared with mice treated with the vehicle only
(Table 1). The tumor growth profiles were analyzed along
with biomarkers, such as estrogen receptors a (ERa, ESR1)
and b (ERb, ESR2), to identify explanatory factors for the
observed heterogeneous growth profiles (Supplementary
Fig. S1B).

LNCaP prostate cancer xenograft model
This experiment studied the effects of a synthetic

ERb-selective agonist [DPN; 2,3-bis(4-hydroxyphenol)-
propionitrile] and of a tissue-specific ER activator, diet-
derived lignan metabolite (ENL) on the growth of the
LNCaP prostate cancer xenografts in immunocompromised

Table 1. Summary of the experimental datasets used in the present work

Experiment DMBA case MCF-7 case LNCaP case 4T1 case

Strain Female Sprague-Dawley
rat

Female athymic
nude mouse

Male athymic
nude mouse

Female immunocompetent
balb/c mouse

Cell line (source) MCF-7 (human) LNCaP (human) 4T1 (mouse)
Cancer model Breast cancer, carcinogen Breast cancer,

xenograft
Prostate cancer,

xenograft
Breast cancer, syngeneic

Treatment ENL LAR DPN or ENL Doxorubicin or
cyclophosphamide

Dosage and route of
administration

Daily 1 or 10 mg/kg
per os

Daily 20 or
100 mg/kg per os

DPN 4.5 mg/60
days s.c. or
ENL 100 mg/kg
in feed

Doxorubicin: weekly
7.5 mg/kg;
cyclophosphamide:
100 mg/kg at
days 0, 2, and 4

Measurement
frequency

Once a week Once a week Twice a week Twice a week

Number of time
points

9 6 11 6

Sample sizes 13 animals per group Control (15), lower
dose (20),
higher dose (20)
tumors

Control (12), DPN (10),
ENL (8) tumors

8 tumors per group

Target size No 20 mm2,a 200 mm3,b No
Response readout Total tumor volume

per animal
Tumor area Tumor volume Tumor volume

Missing value
proportions

Control 4% All groups 0% Control 14% Control 0%
Low dose 4% DPN 10% Doxorubicin 2%
High dose 0% ENL 9% Cyclophosphamide 0%

Additional cell markers Tumor histologic
types

ERa, ERb PSA Metastases in the
lung and liver

Reference 6 19 Unpublished 21

aTreatment starting time defined by average tumor area
bTreatment starting time defined by individual tumor volume
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mice (AthymicNude-Fown1nu,Harlan). The cells (2� 106

cells/200 mL medium/Matrigel) were subcutaneously inoc-
ulated into 5- to 6-week-old male mice. DPN was admin-
istered as pellets (4.5mg for 60 days, Innovative Research of
America). The mice in both control and treatment groups
were fed purified control diet (AIN-93G; ref. 20). ENL was
provided within a special diet including 100 ppm of the
compound. The tumorswere palpated twice aweek, and the
treatment was commenced once a tumor reached the target
volume of 200 mm3. To maximize the number of tumors,
the growth period was allowed to reach the target volume
level within 4 to 6 weeks. Because the number of tumors in
the experiment remained relatively small, a maximal num-
ber of the short and outlier profiles, which often are filtered
out in standard analyses, were included in the statistical
analysis of the heterogeneous dataset (Supplementary Fig.
S1C). In addition to the tumor size, serum prostate-specific
antigen (PSA), a known prostate cancer biomarker, was
measured at sacrifice (Table 1).

4T1 syngeneic mammary cancer model
Mouse mammary adenocarcinoma 4T1-cells (American

Type Culture Collection) were inoculated into the thoracic
mammary fat-pads of 6-week-old female immunocompe-
tent Balb/c mice (Harlan Laboratories Inc.; ref. 21). Two
established drugs were used for the treatments (Table 1):
doxorubicin (22) and cyclophosphamide (23). The drug
treatments were started 6 days after the inoculation of the
cells. Doxorubicin (Doxorubicin Ebewe; Ebewe Pharma
GmbH) was administered 7.5 mg/kg once a week and
cyclophosphamide (Sendoxan, Baxter) 100 mg/kg was
administered at days 0, 2, and 4 since the beginning of
the treatment. The tumor growth profiles showed very
homogeneous patterns within each of the treatment groups
(Supplementary Fig. S1D), possibly due to the host envi-
ronment being native to the 4T1 cancer cell line (24).

The categorizing mixed-effects model
Themixed-effectsmodels have anumber of advantages in

the statistical analysis of tumor growth profiles. First, the
whole longitudinal growth profile, with possible missing
data points, can be used in the model estimation and
parametric inference thereby avoiding the need for selecting
predefined endpoints or ad hoc imputation of missing
values. Second, the random effects give flexibility for the
model to take into account individual tumor- and animal-
specific variation that originates from the given experimen-
tal setup and data. We extended the standard model and
developed a novel, hierarchical mixed-effects model, which
learns the growing andpoorly growing tumor categories in a
given set of longitudinal tumor growth profiles. The cate-
gorizingmixed-effects model is conceptually formulated as:

Tumor response ¼ b1 þ b2 � Treatmentþ b3

� Time point�Growthþ b4

� Treatment� Timepoint�Growth

þ u1;T þ u2;T � Timepoint ðModel 1Þ

Here, the binary treatment covariate indicates the con-
trol and treatment groups and time point indicates the
discrete measurement time points (Supplementary Table
S1). The binary growth covariate is used to distinguish
between the growing and poorly growing tumor catego-
ries. The terms bi represent the model’s fixed effects
accounting for factors such as the base level tumor size
(b1), treatment-induced shift in the average tumor levels
over the timepoints (offset, b2), overall growth rate of
those tumors categorized as growing (b3), and treatment-
induced difference in the growth rate of the growing
tumors (slope effect, b4). The random effects u1,T and
u2,T represent variation specific to an individual tumor T.
The full mathematical model formulation and details of
its estimation, inference, and validation are given in
Supplementary Methods.

Testing for the treatment-effects is done through the
parameter estimates from the fitted categorizing model
(Fig. 1A). The slope effect term b4 evaluates time-depen-
dent changes in the relative tumor growth rate per time
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Figure 1. Schematic illustration of the treatment effect assessment in the
LNCaP DPN experiment. A, fixed effects of the categorizing mixed-
effects model are estimated from the data (b1-b4). The slope effect
evaluates a treatment-induced and time point–dependent decrease in
thegrowth ratesof thegrowing tumors,whereas theoffset termevaluates
a treatment-induced shift in the horizontal tumor levels over all the time
points and tumors. B, once the growing and poorly growing categories
have been found by the model, the category labels are tested against the
treatment labels, hence enabling evaluation of potentially more complex
growth inhibiting treatment effects thatmay not bedirectly reflected in the
offset or slope effects (here P ¼ 0.415, Fisher exact test; Table 3).
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unit in tumors categorized as growing. The slope effect
therefore captures also a subtle suppressive treatment-
effect relative to the overall growth rate b3. An effective
growth inhibition rate was defined as jb4/b3j. The offset
term b2 in turn evaluates more dramatic changes in the
horizontal base level profiles of the tumors in those
studies with a designated target size; otherwise, the terms
b1 and b2 are set equal to zero. Because these terms do not
account for the dynamic changes in the treated or control
profiles, the offset term effectively captures the average
treatment response in the poorly growing tumors over the
entire treatment duration.
We implemented a novel clusteringmethod based on the

expectation-maximization (EM) algorithm for categorizing
the tumor profiles into the growing and poorly growing
subgroups (Supplementary Fig. S2). The model fitting was
done using the restricted maximum likelihood (REML)
estimation in the lme4 package (25) within the R statistical
software (26). The statistical significance of the treatment-
specific fixed effects was assessed through Markov-Chain
Monte Carlo (MCMC) simulation (27). The full details of
the implementationof themodeling framework are given in
SupplementaryMethods. The source code of the implemen-
ted R package, named XenoCat, is freely available (28).

Post hoc statistical analyses
After the growth categories were detected from the fitted

model, 2-sided Fisher exact test was used to assess whether
the found categorization into the growing and poorly
growing subcategories can be explained by the proportion
of tumors from the control and treatment groups (Fig. 1B).
Significant overrepresentation of the treated tumors in the
poorly growing category is indicative of such treatment
effect that inhibits the tumor growth butmay not be directly
reflected in the fixed effect terms of the model. Hence, the
offset and slope effect terms, together with the post hoc
analysis of the detected growth categories using the Fisher
exact test, can be used to draw conclusions on the treatment
effects and underlying mechanisms of action.
In addition to the treatment labels, other external bio-

logic and experimental explanatory factors for the growing
andpoorly growing categorieswere subsequently tested. For
discrete explanatory factors, such as the histologic tumor
classification, the Fisher exact test was used to assess the
association between the tumor growth labels and the
histologic classes. For normally distributed continuous
factors, such as the ERb positivity, the Welch 2-sample
unpaired t test was used to evaluate the difference in
the ERb expression between the 2 growth categories. In case
the Shapiro–Wilk normality test null hypothesis was
rejected, the Wilcoxon rank-sum test was used instead as
a nonparametric alternative.

Power, precision, and sample size estimation
Comparisons between different experimental designs

and modeling setups were carried out to provide further
model-guided information on their operation and sug-
gestions for future improvements. The comparisons were

based on parameters, such as the number of tumors and/
or timepoints, which were investigated in relation to the
calculated statistical study power, defined as the proba-
bility of detecting a statistically significant treatment
effect, provided that the effect is truly present and that
the model is correct. Estimation of the sample size N that
is needed to achieve a given statistical power was based on
simulated data generated according to the model fit (29).
Furthermore, a precision analysis was implemented using
the modeling framework to give guidance on the most
informative time periods. Precision here means the
reciprocal of the variance of the test statistic, given the
estimated model and the experimental design (30). A
general overview of the modeling workflow is available
in Supplementary Fig. S3.

Results
An efficient implementation of the statistical modeling

framework was developed and distributed as an open-
source R package, named XenoCat, with accompanying
user instructions (28). Here, the framework was applied to
4 case studies and the results from the categorizing mixed-
effects model were compared with those obtained using the
conventional mixed-effects model in terms of statistical
inference, power, precision, and suggested sample size. The
conventional noncategorizing mixed-effects model is a spe-
cial case of the Model 1, in which the growth covariate is
omitted (i.e., set to unity).

DMBA case
Estimation of the categorizing mixed-effects model in

the DMBA experiment illustrates how the model can
effectively describe the growing and poorly growing
tumor subcategories within the treatment and control
groups (Fig. 2). By taking into account such tumor growth
heterogeneity, the categorizing model gave highly signif-
icant treatment effect on the slope effect term consistently
both in the in low-dose and the high-dose groups (P ¼
7.4 � 10�5, jb4/b3j ¼ 40% and P ¼ 3.8 � 10�5, jb4/b3j ¼
49%; Table 2). The subtle suppressive effect of the dietary
intervention (ENL treatment) on the growth rate was
missed by the conventional mixed-effects model even in
the high dosage treatment group (P > 0.05). The increased
sensitivity of the categorizing model is due to improved
model fit, as indicated by the loss of skewness and multi-
modality in the distribution of the random slopes (Sup-
plementary Fig. S4).

Because the identified growing and poorly growing
categories could not be explained by the ENL treatment
groups (Fig. 2D; Table 3), we searched for explanatory
factors from the histologic analysis of the tumors. Accord-
ing to expectations, the tumors classified as "well differ-
entiated" or "atrophic" were decreased in proportion in
the growing tumor category consistently under both dos-
age levels, whereas the tumors classified as "poorly dif-
ferentiated" were more abundant in the growing category
(Table 3). Even if showing only a borderline statistical
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association (P¼ 0.069), the relative proportion of tumors
in the histologic classes supported the existence and
relevance of the 2 growth categories. In contrast, the
association between the treatment groups and the histo-
logic types was highly insignificant (P ¼ 0.955) indicating
that the treatment per se did not influence the differen-
tiation process.

MCF-7 case
In the MCF-7 xenograft experiment, the effects of the

dietary lignan LAR treatment were found insignificant both
on the offset and slope terms (Table 2). However, even in
the absence of statistically significant treatment effects,
the growing and poorly growing tumor categories could
be explained by the treatment groups under the high dosage
LAR treatment (Fisher exact test, P ¼ 0.022; Table 3),
suggesting that the dietary lignan treatment successfully
blocks a significant portion of tumors into the poorly
growing category. Interestingly, the tumors in the growing
and poorly growing categories were also different in
terms of their measured ERb levels in the high dosage group
(P ¼ 0.008; Table 3) indicating that ERb inhibits tumor
growth, as has been previously suggested on the basis of
results obtained from other experimental breast cancer
models (31).

LNCaP case
A xenograft study with LNCaP cells was analyzed in

terms of possible treatment effects, and to provide guid-
ance for a sufficient sample size and the most informative
time periods to be used in further studies. The categoriz-
ing model showed, already in the present data, a statis-
tically highly significant slope effect in response to the
ENL treatment (P ¼ 0.001, jb4/b3j ¼ 80%), and a slightly
significant slope effect in response to the DPN treatment
(P ¼ 0.037, jb4/b3j ¼ 48%). Both of these effects were
undetected by the conventional mixed-effects model (P >
0.05; Table 2). However, both model types captured
well the target tumor volume of 200 mm3 in their
base level terms under both treatments (P < 10�5),
whereas the categorization emphasized the overall
growth terms (P < 10�5).

The measured PSA concentrations at sacrifice were sig-
nificantly different between the tumors classified into the
growing or poorly growing categories. According to expec-
tations, the PSA levels were consistently higher in the
growing category than in the poorly growing category both
in response to the DPN (P ¼ 0.005) and ENL (P ¼ 0.001)
treatments (Table 3). Interestingly, the PSA levels at sacrifice
were similar in the control and treatment groups both on
DPN and ENL (P > 0.05) indicating that factors other than
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the treatment contribute to the identified between-tumor
differences in terms of their growth profiles and PSA levels.
We further used themodeling framework to predict that a

significant slope effect (P < 0.05 at 0.8 power) in response to
the DPN treatment could be obtained when the number of
tumors is 19 per group (Supplementary Fig. S5A). Notably,
with the noncategorizing model, the same sample size
estimate would be 25, showing the benefits of the catego-
rizing model already in the initial power analysis. The
power analysis also predicted that significant offset effect
will not be obtained within reasonable animal numbers.
The precision analysis showed differences in the model

types and treatment periods when assessing treatment
effects (Supplementary Fig. S5B); in particular, the relative
importance of the initial time points for the statistical
precision (Supplementary Fig. S5C).

4T1 case
In cases such as 4T1, where there is no evident within-

group tumor heterogeneity, the EM algorithm classifies all
the tumors into the growing category, and therefore the
categorizing and noncategorizing models gave the same
results (Table 2). More specifically, after adjustment to
quadratic growth using residual plots (Supplementary

Table 2. Fixed effect estimates, confidence intervals and statistical significance

DMBA case Categorizing model Noncategorizing model

ENL low dose Estimate HPD interval P Estimate HPD interval P
Overall growth b3 3.12 [2.56 to 3.39] <0.001 0.989 [0.34 to 1.54] <0.01
Slope effect b4 �1.25 [�1.74 to �0.703] <0.001 �0.174 [�1.04 to 0.66] 0.659

ENL high dose
Overall growth b3 3.26 [2.78 to 3.47] <0.001 1.02 [0.50 to 1.44] <0.001
Slope effect b4 �1.60 [�2.01 to �0.871] <0.001 �0.681 [�1.28 to 0.04] 0.066

MCF-7 case
LAR low dose
Base level b1 21.4 [16.9 to 25.8] <0.001 21.0 [16.5 to 25.8] <0.001
Offset b2 �2.66 [�8.68 to 3.01] 0.359 �4.18 [�10.5 to 1.97] 0.183
Overall growth b3 8.71 [6.92 to 10.6] <0.001 8.37 [6.55 to 10.2] <0.001
Slope effect b4 �0.599 [�3.10 to 1.94] 0.619 �1.04 [�3.44 to 1.44] 0.398

LAR high dose
Base level b1 21.4 [17.0 to 25.7] <0.001 21.0 [16.5 to 25.7] <0.001
Offset b2 1.05 [�5.00 to 6.28] 0.802 �0.945 [�7.12 to 5.08] 0.761
Overall growth b3 8.71 [6.98 to 10.5] <0.001 8.37 [6.46 to 10.3] <0.001
Slope effect b4 �1.72 [�4.08 to 1.07] 0.237 �3.07 [�5.63 to �0.53] <0.05

LNCaP case
DPN
Base level b1 234 [196 to 272] <0.001 233 [192 to 273] <0.001
Offset b2 �22.7 [�78.5 to 33.9] 0.421 �19.5 [�78.5 to 40.5] 0.540
Overall growth b3 101 [75.4 to 130] <0.001 52.8 [22.8 to 81.5] <0.01
Slope effect b4 �48.9 [�95.6 to �2.91] <0.05 �41.0 [�83.2 to 2.99] 0.072

ENL
Base level b1 234 [194 to 275] <0.001 233 [191 to 276] <0.001
Offset b2 �8.31 [�72.6 to 53.3] 0.784 �5.19 [�72.1 to 60.9] 0.862
Overall growth b3 101 [74.5 to 130] <0.001 52.7 [22.6 to 81.7] <0.01
Slope effect b4 �81.1 [�125 to –36.1] <0.01 �45.1 [�92.2 to 1.02] 0.058

4T1 case
Doxorubicin
Overall growth b3 68.4 [57.6 to 79.3] <0.001 68.4 [57.6 to 79.3] <0.001
Slope effect b4 �16.8 [�32.4 to �1.40] <0.05 �16.8 [�32.0 to �1.12] <0.05

Cyclophosphamide
Overall growth b3 68.4 [60.5 to 76.5] <0.001 68.4 [60.2 to 76.4] <0.001
Slope effect b4 �66.5 [�78.3 to �54.7] <0.001 �66.8 [�78.2 to �55.3] <0.001

NOTE: The highest posterior density (HPD), 95%confidence intervals, andP valueswere estimated using 100,000MCMCsimulations.
Negativeestimates for the treatment specific terms (b2,b4) indicatepotential treatmenteffects.Model termsb1 andb2were set to zero in
studieswithout adesignated tumor target size (DMBA, 4T1). The fixedeffectspresented in this table are visualized in aparallel fashion in
Supplementary Fig. S10.
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Fig. S6), it was confirmed that doxorubicin resulted in
regressed tumor growth profiles (P < 0.05), whereas cyclo-
phosphamide completely stabilized the growth of each
treated tumor (P < 10�6).

To test the relative benefits of the categorizing model in a
setting where the underlying growth categories and true
treatment effect were predefined, we constructed a simulat-
ed dataset by combining the doxorubicin- and cyclophos-
phamide-treated tumors into a single treatment group. The
EM algorithm separated the sources of these growth profiles
with 100% accuracy within the control and treatment
groups (Fig. 3A). The categorizing model also enabled
detection of a significant treatment slope effect (P ¼
0.002), which remained undetected by the noncategorizing
model (Fig. 3B). This is due to the inability of the non-
categorizing model to adjust for the distinct sources of
intertumor variation, leading to poor model fit and multi-
modality in the slope estimates, which could be corrected
by taking into account the tumor heterogeneity with the
categorizing model (Fig. 3C).

Finally, we also conducted simulations under the null
hypothesis of no true treatment effect (Supplementary
Material). As expected, an increase in the type-I error
appeared under such situation if the categorization

approach was applied to homogeneous data or if the non-
categorizing approach was applied to heterogeneous data
(Supplementary Table S2). The model diagnostic tools
should therefore be used tomake informed decisions about
the model type and structure that is most preferred for the
dataset under analysis.

Discussion
This study showed (i) the benefits of modeling the

growing and poorly growing categories in terms of
improved statistical inference (e.g., DMBA and 4T1 cases);
(ii) how the detected categories may be associated with
interesting biologic factors, such as endogenous ERb levels
in the MCF-7 case, which provide insights into the under-
lying tumor heterogeneity; and (iii) how the framework can
provide informed suggestions on designing more effective
tumor growth experiments in terms of sufficient sample
sizes andmost informative treatment periods (LNCaP case).
The generic modeling framework can also be extended to
include additional covariates, such as quadratic growth
profiles (Supplementary Fig. S6) or probabilistic tumor
categorization (Supplementary Fig. S2). For instance, as the
heterogeneity in the growth profiles in the MCF-7 and
LNCaP studies was not so clear-cut, continuous growth

Table 3. Post hoc association analysis of the detected tumor growth categories

Treatment classes
(% within category)

Histologic classesa

(% within category)

DMBA case Control Treatment P Poorly differentiated Well differentiated Atrophic P

ENL low dose
Growing 4 (44%) 5 (56%) 4 (67%) 2 (33%) 0 (0%)
Poorly growing 9 (53%) 8 (47%) 1.000 2 (17%) 7 (58%) 3 (25%) 0.156

ENL high dose
Growing 4 (67%) 2 (33%) 3 (60%) 1 (20%) 1 (20%)
Poorly growing 9 (45%) 11 (55%) 0.645 2 (13%) 10 (67%) 3 (20%) 0.069

MCF-7 case ERb expressionb (per 1,000 cells)
LAR low dose
Growing 14 (48%) 15 (52%) 248.1 � 238.7
Poorly growing 1 (17%) 5 (83%) 0.207 82.0 � 56.6 0.115

LAR high dose
Growing 14 (56%) 11 (44%) 213.0 � 127.0
Poorly growing 1 (10%) 9 (90%) 0.022 329.7 � 32.7 0.008

LNCaP case PSA concentrationb (at sacrifice, mg/L)
DPN
Growing 6 (67%) 3 (33%) 97.3 � 48.3
Poorly growing 6 (46%) 7 (54%) 0.415 29.3 � 17.7 0.005

ENL
Growing 6 (60%) 4 (40%) 99.1 � 45.5
Poorly growing 6 (60%) 4 (40%) 1.000 29.1 � 15.4 0.001

NOTE: Underlining indicates statistical significance (P � 0.05).
aSome of the tumors could not be histologically typed
bValues expressed as mean � SD

Laajala et al.

Clin Cancer Res; 18(16) August 15, 2012 Clinical Cancer Research4392

on February 26, 2015. © 2012 American Association for Cancer Research. clincancerres.aacrjournals.org Downloaded from 

Published OnlineFirst June 27, 2012; DOI: 10.1158/1078-0432.CCR-11-3215 

http://clincancerres.aacrjournals.org/


covariates were further used to show that such probabilistic
categorization resulted in similar conclusions as obtained
from the binary categorization (Supplementary Table S3).

Existing statistical approaches and their limitations
Tumor growth profiles have traditionally been analyzed

using univariate statistical approaches that do not fully take

into account the tumor heterogeneity within the treatment
and control groups. These approaches are typically based on
the comparison of tumor sizes at a prespecified time point,
using statisticalmethods such as t tests and ANOVA, or their
rank-based alternatives such as Wilcoxon–Mann–Whitney
and Kruskal–Wallis test (1, 4–12). Another commonly used
end point is the time until tumor size doubling, which is
analyzed using statistical methods from survival analysis
such as the log-rank test (1). There are, however, some
potential pitfalls in the use of such single end point
approaches. First, an invalid choice of the evaluation time
point or the target tumor sizemay lead to substantial loss of
information, in case a large fraction of tumors have not
reached the predefined endpoint (32, 33). Second, any
single end point is unpowered to detect treatment mechan-
isms behind dynamic patterns of tumor growth (12). This
was exemplified in the DMBA case, where only 2 of the 9
time points showed a significant treatment effect in the
original ANOVA-based analysis (6), making the inference
upon the efficacy of the dietary intervention more difficult.

Longitudinal statistical modeling methods have also
been developed for tumor growth experiments, but these
are often restricted to rather specific study designs or ques-
tions, and lack effective modeling of intertumor heteroge-
neity (1). Related approaches that share similar methodol-
ogies include, for instance, a standard t test together with an
EM algorithm as well as Bayesian modeling approaches for
testing differences in treatment regimens (13–15). Other
authors have developed a nonlinearmethod for summing 2
exponential functions (16), or a nonparametric approach
for estimating tumor growth profiles using penalized spline
functions (17). However, even if these models can deal, for
instance, with missing and censored data values, other
important characteristics of the growth profiles, such as
tumor regression or growth rates, cannot be estimated using
such approaches. Finally, many of the more advanced
statistical models introduced for analyzing tumor growth
experiments are not implemented as user-friendly software
packages, which hinders their routine use in data analysis.

Recently, an interesting Bayesian hierarchical change-
point (BHC) model was proposed for analyzing long treat-
ment experiments (12). Themodel assumes that the treated
tumors will first suppress in response to the treatment, then
reach aminimum, and later, reboundwith both the decline
and the regrowth curves assumed being linear on the log
scale. The main difference between our framework and the
BHCmodels is that the latter categorizes the growth profile
of each individual tumor into these specific growth periods
(i.e., it models intratumor variability), whereas our model
categorizes the given set of tumor profiles into growing and
poorly growing classes (i.e., it models intertumor variabil-
ity). The BHC model is especially useful for estimating
regression period and nadir tumor volume for such tumors
that contain measurements below the limit of quantitation
leading to missing values and censored data (1). This is
often the case when assessing more aggressive treatment
options, which can totally regress the tumor growth and
the main focus lies on testing rebound effects and possible
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Figure 3. Modeling the simulated 4T1 dataset with and without
categorization. A, the EM algorithm and the categorizing model correctly
identified the growing and poorly growing subgroups both in the
combined control group (original controls and square root of their
response traces) and in the combined treatment group (doxorubicin- and
cyclophosphamide-treated tumors). B, the categorizing approach
detects the doxorubicin-specific treatment effect (left, P¼ 0.002), which
is missed by the noncategorizing approach (right, P ¼ 0.441). The fixed
effect estimates of the noncategorizing model are not feasible due to the
assumption of homogeneous growth profiles. C, the random-effects of
the categorizing approach show reasonable model fit (left), whereas the
random slopes of the noncategorizing approach exhibit severe
multimodality (right), suggesting that the growth profiles indeed originate
from 2 distinct distributions (i.e., tumor subcategories).
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side effects. On the other hand, when experimenting with
less aggressive treatment alternatives,more subtle treatment
effects are easilymissed in case the intertumor heterogeneity
is not properly taken into account.

Benefits of the categorizing mixed-effects model
To our knowledge, there are no existing approaches

towards modeling the growing and poorly growing tumor
categories, even if the presence of such categories in the
tumor growth experiments has been long evident (2–8).
While there are various approaches to reduce model fit
heteroscedasticity, such as the Box-Cox or logarithmic
transformations, these cannot model the intrinsic hetero-
geneity encountered within control and treatment groups.
This study showed that when the observed within- and
between-group variation is effectively modeled, it is possi-
ble to improve the sensitivity of the treatment evaluation
through relevant model parameters. In particular, the slope
parameter was shown informative when evaluating the
efficacy of dietary plant lignans. Our modeling framework
also enables comparison of different experimental designs
in terms of their associated study power, precision, and
sample size estimates, something that is rarely available
from other modeling works. However, it should be appre-
ciated that the operation of these modeling tools depends
on thedata under analysis. Therefore, data visualization and
model diagnostics should always be used to confirm that
the model assumptions are fulfilled and the model results
are valid (see Supplementary Methods for details).

To promote its widespread application in tumor growth
studies, we have made publicly available the modeling
framework in the form of an R package, named XenoCat,
with implementation, source code, user-instructions, and
step-by-step example available (28). In contrast to most
existing models, our framework can be robustly applied to
various tumor growth experiments without making strong
assumptions about the type or amount of data under
analysis. For instance, the 4 case studies analyzed here were
conducted using different tumor models, representing a
wide range of experimental setups, such as different number
of tumors and various response readouts and their distri-
butional characteristics, which can drastically affect the
performance of the traditional statistical methods. The
model can deal with short or even outlier profiles, which
may be present in the data due to various filtering criteria or
very aggressively growing tumors, respectively, and which
are frequently excluded from the standard statistical anal-
ysis. Therefore, the model can use the full information
captured in the entire longitudinal profiles to maximize
the output of the tumor growth studies.

The novel tumor categorizing algorithm does not only
enable calculating interesting growth parameters, but it also
allows for detection of hidden subgroups of differentially
growing tumors within treatment and control groups that
may associate with the underlying tumor biology. In par-
ticular, differences observed in the ERb expression between
the growing and poorly growing categories in the MCF-7
breast cancer model are highly intriguing. Previous studies

on genetically modified breast cancer cell lines with high
constitutive or inducible expression of ERb show that tumor
growth is significantly reducedwhen the transgene is turned
on (31).Our study is the first, to our knowledge, to show the
inverse association between tumor growth and endogenous
ERb expression and suggests that endogenous ERb levels
may be regulated by interventions (here, dietary lignans).
This phenomenon may be linked to underlying differences
in tumor progression mechanisms (34) and can even give
insights into treatment resistance (35). Besides providing
additional explanations for the detected tumor growth
categories, biologic correlates behind the model-captured
tumor heterogeneity could thus open up new possibilities
for identifying novel targets and treatment opportunities for
cancer.

Limitations of the model and its future extensions
A number of simplifying assumptions were made here to

make the implemented model as robust and flexible as
possible. Themethodology proposedhere is basedon linear
mixed-effectsmodels with dichotomous categorization and
assumption that the poorly growing profiles are approxi-
mately horizontal. However, in cases where deemed appro-
priate, the generic model can be extended to more complex
settings, including nonlinear growth patterns or several
growth categories with non-zero slope parameters or prob-
abilistic tumor categorization, allowing, for instance, par-
tially overlapping groups such as growing, regressing, and
stabilizing profiles (6). Another interesting future question
we intend to tackle is that whether combining multiple
phenotypic readouts for treatment response, such as tumor
sizes and PSA levels, would improve statistical power in the
case of the prostate cancer model. The current implemen-
tationof the power analysis also assumes complete data, but
missing values, either informatively censored ormissing-at-
random (36), could be incorporated in the future work.
Finally, the computationally, rather intensive, power calcu-
lations could easily be split into parallel processes for
maximal computational efficiency (Supplementary Fig. S7).
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