95 research outputs found

    Specialty construction on urban highways

    Get PDF

    Drought Stress Acclimation Imparts Tolerance to Sclerotinia sclerotiorum and Pseudomonas syringae in Nicotiana benthamiana

    Get PDF
    Acclimation of plants with an abiotic stress can impart tolerance to some biotic stresses. Such a priming response has not been widely studied. In particular, little is known about enhanced defense capacity of drought stress acclimated plants to fungal and bacterial pathogens. Here we show that prior drought acclimation in Nicotiana benthamiana plants imparts tolerance to necrotrophic fungus, Sclerotinia sclerotiorum, and also to hemi-biotrophic bacterial pathogen, Pseudomonas syringae pv. tabaci. S. sclerotiorum inoculation on N. benthamiana plants acclimated with drought stress lead to less disease-induced cell death compared to non-acclimated plants. Furthermore, inoculation of P. syringae pv. tabaci on N. benthamiana plants acclimated to moderate drought stress showed reduced disease symptoms. The levels of reactive oxygen species (ROS) in drought acclimated plants were highly correlated with disease resistance. Further, in planta growth of GFPuv expressing P. syringae pv. tabaci on plants pre-treated with methyl viologen showed complete inhibition of bacterial growth. Taken together, these experimental results suggested a role for ROS generated during drought acclimation in imparting tolerance against S. sclerotiorum and P. syringae pv. tabaci. We speculate that the generation of ROS during drought acclimation primed a defense response in plants that subsequently caused the tolerance against the pathogens tested

    STIF: Identification of stress-upregulated transcription factor binding sites in Arabidopsis thaliana

    Get PDF
    The expressions of proteins in the cell are carefully regulated by transcription factors that interact with their downstream targets in specific signal transduction cascades. Our understanding of the regulation of functional genes responsive to stress signals is still nascent. Plants like Arabidopsis thaliana, are convenient model systems to study fundamental questions related to regulation of the stress transcriptome in response to stress challenges. Microarray results of the Arabidopsis transcriptome indicate that several genes could be upregulated during multiple stresses, such as cold, salinity, drought etc. Experimental biochemical validations have proved the involvement of several transcription factors could be involved in the upregulation of these stress responsive genes. In order to follow the intricate and complicated networks of transcription factors and genes that respond to stress situations in plants, we have developed a computer algorithm that can identify key transcription factor binding sites upstream of a gene of interest. Hidden Markov models of the transcription factor binding sites enable the identification of predicted sites upstream of plant stress genes. The search algorithm, STIF, performs very well, with more than 90% sensitivity, when tested on experimentally validated positions of transcription factor binding sites on a dataset of 60 stress upregulated genes

    Methods of Collection and Transport of Materials to Laboratory from Oral and Dental Tissue Lesions

    Get PDF
    The oral pathology laboratory is the most resourceful place for the diagnosis of oral lesions. Most clinicians err on the collection and transport of oral and associated tissues to the laboratory. Oral tissue examination includes a wide range such as oral biopsy (for routine formalin fixed and fresh tissue), saliva, swabs, cytology smears and fine needle-aspirated, cystic fluid. This in turn adversely affects the final diagnosis of the disease. Thus, it is high time to appreciate and acknowledge the role of collection containers, fixing reagents and transport media as an adjunct for successful diagnosis

    Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut

    Get PDF
    Peanut, found to be relatively drought tolerant crop, has been the choice of study to characterize the genes expressed under gradual water deficit stress. Nearly 700 genes were identified to be enriched in subtractive cDNA library from gradual process of drought stress adaptation. Further, expression of the drought inducible genes related to various signaling components and gene sets involved in protecting cellular function has been described based on dot blot experiments. Fifty genes (25 regulators and 25 functional related genes) selected based on dot blot experiments were tested for their stress responsiveness using northern blot analysis and confirmed their nature of differential regulation under different field capacity of drought stress treatments. ESTs generated from this subtracted cDNA library offered a rich source of stress-related genes including signaling components. Additional 50% uncharacterized sequences are noteworthy. Insights gained from this study would provide the foundation for further studies to understand the question of how peanut plants are able to adapt to naturally occurring harsh drought conditions. At present functional validation cannot be deemed in peanut, hence as a proof of concept seven orthologues of drought induced genes of peanut have been silenced in heterologous N. benthamiana system, using virus induced gene silencing method. These results point out the functional importance for HSP70 gene and key regulators such as Jumonji in drought stress response

    Simultaneous expression of regulatory genes associated with specific drought‐adaptive traits improves drought adaptation in peanut

    Get PDF
    Adaptation of crops to drought-prone rain-fed conditions can be achieved by improving plant traits such as efficient water mining (by superior root characters) and cellular-level tolerance mechanisms. Pyramiding these drought-adaptive traits by simultaneous expression of genes regulating drought-adaptive mechanisms has phenomenal relevance in improving stress tolerance. In this study, we provide evidence that peanut transgenic plants expressing Alfalfa zinc finger 1 (Alfin1), a root growth-associated transcription factor gene, Pennisetum glaucum heat-shock factor (PgHSF4) and Pea DNA helicase (PDH45) involved in protein turnover and protection showed improved tolerance, higher growth and productivity under drought stress conditions. Stable integration of all the transgenes was noticed in transgenic lines. The transgenic lines showed higher root growth, cooler crop canopy air temperature difference (less CCATD) and higher relative water content (RWC) under drought stress. Low proline levels in transgenic lines substantiate the maintenance of higher water status. The survival and recovery of transgenic lines was significantly higher under gradual moisture stress conditions with higher biomass. Transgenic lines also showed significant tolerance to ethrel-induced senescence and methyl viologen-induced oxidative stress. Several stress-responsive genes such as heat-shock proteins (HSPs), RING box protein-1 (RBX1), Aldose reductase, late embryogenesis abundant-5 (LEA5) and proline-rich protein-2 (PRP2), a gene involved in root growth, showed enhanced expression under stress in transgenic lines. Thus, the simultaneous expression of regulatory genes contributing for drought-adaptive traits can improve crop adaptation and productivity under water-limited conditions

    Promoter hypermethylation of CDH13 is a common, early event in human esophageal adenocarcinogenesis and correlates with clinical risk factors

    Full text link
    Although the CDH13 gene has been shown to undergo epigenetic silencing by promoter methylation in many types of tumors, hypermethylation of this gene in Barrett's-associated esophageal adenocarcinogenesis has not been studied. Two hundred fifty-nine human esophageal tissues were therefore examined for CDH13 promoter hypermethylation by real-time methylation-specific PCR. CDH13 hypermethylation showed discriminative receiver-operator characteristic curve profiles, sharply demarcating esophageal adenocarcinoma (EAC) from esophageal squamous cell carcinoma (ESCC) and normal esophagus (NE) ( p < 0.0001). CDH13 normalized methylation values (NMV) were significantly higher in Barrett's esophagus (BE), dysplastic BE (D) and EAC than in NE ( p < 0.0000001). CDH13 hypermethylation frequency was 0% in NE but increased early during neoplastic progression, rising to 70% in BE, 77.5% in D and 76.1% in EAC. Both CDH13 hypermethylation frequency and its mean NMV were significantly higher in BE with than without accompanying EAC. In contrast, only 5 (19.2%) of 26 ESCCs exhibited CDH13 hypermethylation. Furthermore, both CDH13 hypermethylation frequency and its mean NMV were significantly higher in EAC than in ESCC, as well as in BE or D vs . ESCC. Interestingly, mean CDH13 NMV was significantly lower in short-segment than in long-segment BE, a known clinical risk factor for neoplastic progression. Similarly, BE segment length was significantly lower in specimens with unmethylated than with methylated CDH13 promoters. 5-aza-2′-deoxycytidine treatment of OE33 EAC and KYSE220 ESCC cells reduced CDH13 methylation and increased CDH13 mRNA expression. These findings suggest that hypermethylation of CDH13 is a common, tissue-specific event in human EAC, occurs early during BE-associated neoplastic progression, and correlates with known clinical neoplastic progression risk factors. © 2008 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/60976/1/23804_ftp.pd

    Cross-Talk Signaling in Rice During Combined Drought and Bacterial Blight Stress

    Get PDF
    Due to climatic changes, rice crop is affected by moisture deficit stress and pathogens. Tissue water limitation besides reducing growth rates, also renders the crop susceptible to the infection by Xanthomonas oryzae pv. oryzae (Xoo) that causes bacterial leaf blight. Independently, both drought adaptation and Xoo resistance have been extensively studied. Though the cross-talk between drought and Xoo stress responses have been explored from individual stress studies, examining the combinatorial stress response is limited in rice. Recently published combined stress studies showed that under the combined stress, maintenance of carbon assimilation is hindered and such response is regulated by overlapping cellular mechanisms that are different from either of the individual stresses. Several receptors, MAP kinases, transcription factors, and ribosomal proteins, are predicted for playing a role in cellular homeostasis and protects cells from combined stress effects. Here we provide a critical analysis of these aspects using information from the recently published combined stress literature. This review is useful for researchers to comprehend combinatorial stress response of rice plants to drought and Xoo
    corecore