5 research outputs found

    Properties of concrete made from industrial wastes containing calcium carbide residue palm oil fuel ash rice husk-bark ash and recycled aggregates

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­āļ„āļ­āļ™āļāļĢāļĩāļ•āļ™āļĩāđ‰āļ–āļđāļāļ—āļģāļ‚āļķāđ‰āļ™ āđ‚āļ”āļĒāđƒāļŠāđ‰āļ§āļąāļŠāļ”āļļāđ€āļŦāļĨāļ·āļ­āļ—āļīāđ‰āļ‡āļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāļ—āļąāđ‰āļ‡āđƒāļ™āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āđāļĨāļ°āļĄāļ§āļĨāļĢāļ§āļĄāļāļēāļāđāļ„āļĨāđ€āļ‹āļĩāļĒāļĄāļ„āļēāļĢāđŒ-āđ„āļšāļ”āđŒ (CCR) āļœāļŠāļĄāđāļĒāļāļāļąāļšāđ€āļ–āđ‰āļēāļ›āļēāļĨāđŒāļĄāļ™āđ‰āļģāļĄāļąāļ™ (PA) āđāļĨāļ°āđ€āļ–āđ‰āļēāđāļāļĨāļšāđ€āļ›āļĨāļ·āļ­āļāđ„āļĄāđ‰ (RA) āļ™āļģāļĄāļēāđƒāļŠāđ‰āđ€āļ›āđ‡āļ™āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āđāļ—āļ™āļ—āļĩāđˆāļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāđƒāļ™āļŠāđˆāļ§āļ™āļœāļŠāļĄāļ„āļ­āļ™āļāļĢāļĩāļ• āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨāļ–āļđāļāļ™āļģāļĄāļēāđƒāļŠāđ‰āđāļ—āļ™āļ—āļĩāđˆāļĄāļ§āļĨāļĢāļ§āļĄāļ˜āļĢāļĢāļĄāļŠāļēāļ•āļīāđ€āļžāļ·āđˆāļ­āļ—āļĩāđˆāļŦāļĨāđˆāļ­āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ„āļ­āļ™āļāļĢāļĩāļ• (āļ„āļ­āļ™āļāļĢāļĩāļ• CCR-PA āđāļĨāļ° CCR-RA) āļŠāļĄāļšāļąāļ•āļīāļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ• āđ„āļ”āđ‰āđāļāđˆ āļāļģāļĨāļąāļ‡āļ­āļąāļ” āļāļēāļĢāđāļ—āļĢāļāļ‹āļķāļĄāļ‚āļ­āļ‡āļ„āļĨāļ­āđ„āļĢāļ”āđŒ āđāļĨāļ°āļāļēāļĢāļ‹āļķāļĄāļ‚āļ­āļ‡āļ™āđ‰āļģāļœāđˆāļēāļ™āļ„āļ­āļ™āļāļĢāļĩāļ•āđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļ›āļĢāļ°āđ€āļĄāļīāļ™āđāļĨāļ°āđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļāļąāļšāļ„āļ­āļ™āļāļĢāļĩāļ•āļ„āļ§āļšāļ„āļļāļĄ (āļ„āļ­āļ™āļāļĢāļĩāļ• CON) āļœāļĨāļāļēāļĢāļ§āļīāļˆāļąāļĒāļžāļšāļ§āđˆāļēāļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ CCR-PA āđāļĨāļ° CCR-RA āļŠāļēāļĄāļēāļĢāļ–āļ™āļģāļĄāļēāđƒāļŠāđ‰āđ€āļ›āđ‡āļ™āļŠāļēāļĢāļĒāļķāļ”āđ€āļāļēāļ°āđƒāļ™āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāđƒāļŠāđ‰āļĄāļ§āļĨāļĢāļ§āļĄāļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨ āđāļĄāđ‰āļ§āđˆāļēāļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ CCR-PA āđāļĨāļ° CCR-RA āļĄāļĩāļŦāļĢāļ·āļ­āđ„āļĄāđˆāļĄāļĩāļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒ āļāļēāļĢāļžāļąāļ’āļ™āļēāļāļģāļĨāļąāļ‡āļ­āļąāļ”āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ• CCR-PA āđāļĨāļ° CCR-RA āļ„āļĨāđ‰āļēāļĒāļāļąāļšāļ„āļ­āļ™āļāļĢāļĩāļ• CON āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ CCR-PA āđāļĨāļ° CCR-RA āļŠāļēāļĄāļēāļĢāļ–āļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āļāļēāļĢāđāļ—āļĢāļāļ‹āļķāļĄāļ‚āļ­āļ‡āļ„āļĨāļ­āđ„āļĢāļ”āđŒāđāļĨāļ°āļāļēāļĢāļ‹āļķāļĄāļ‚āļ­āļ‡āļ™āđ‰āļģāļœāđˆāļēāļ™āļ„āļ­āļ™āļāļĢāļĩāļ•āđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļž āļœāļĨāļāļēāļĢāļ§āļīāļˆāļąāļĒāļĒāļąāļ‡āļŠāļĩāđ‰āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļēāļ„āļ­āļ™āļāļĢāļĩāļ• CCR-PA āđāļĨāļ° CCR-RA āļŠāļēāļĄāļēāļĢāļ–āđƒāļŠāđ‰āđ€āļ›āđ‡āļ™āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāđ€āļ›āđ‡āļ™āļĄāļīāļ•āļĢāļ•āđˆāļ­āļŠāļīāđˆāļ‡āđāļ§āļ”āļĨāđ‰āļ­āļĄāļŠāļ™āļīāļ”āđƒāļŦāļĄāđˆ āđ€āļžāļĢāļēāļ°āļ„āļ­āļ™āļāļĢāļĩāļ•āđ€āļŦāļĨāđˆāļēāļ™āļĩāđ‰āļŠāļēāļĄāļēāļĢāļ–āļĨāļ”āļāļēāļĢāļ›āļĨāđˆāļ­āļĒāļāđŠāļēāļ‹āļ„āļēāļĢāđŒāļšāļ­āļ™āđ„āļ”āļ­āļ­āļāđ„āļ‹āļ”āđŒāđāļĨāļ°āļĨāļ”āļ›āļąāļāļŦāļēāļŠāļīāđˆāļ‡āđāļ§āļ”āļĨāđ‰āļ­āļĄAbstractThis concrete was made by using several industrial wastes in both binder and aggregates. Calcium carbide residue (CCR) mixed separately with palm oil fuel ash (PA) and rice husk-bark ash (RA), and was used as a binder instead of Portland cement in the concrete mixture. Furthermore, recycled aggregates were fully replaced natural aggregates in order to cast concrete specimens (CCR-PA and CCR-RA concretes). Concrete properties namely compressive strength, chloride migration, and water permeability of CCR-PA and CCR-RA concretes were evaluated and compared with the conventional concrete (CON concrete). The results indicated that CCR-PA and CCR-RA binders could be used as a new cementitious material in recycled aggregate concrete, even though the CCR-PA and CCR-RA binders contained no Portland cement. The characteristic compressive strength of CCR-PA and CCR-RA concretes developed similar to CON concrete. Moreover, CCR-PA and CCR-RA binders in the mixtures were effectively improving the chloride migration and water permeability of recycled aggregate concretes. These results also suggested that CCR-PA and CCR-RA concretes can be used as a new environmental friendly concrete because of these concretes can reduce as much as CO2 emissions and environmental problems

    āļāļēāļĢāđƒāļŠāđ‰āļāļēāļāđāļ„āļĨāđ€āļ‹āļĩāļĒāļĄāļ„āļēāļĢāđŒāđ„āļšāļ”āđŒāļœāļŠāļĄāđ€āļ–āđ‰āļēāļ–āđˆāļēāļ™āļŦāļīāļ™āđ€āļ›āđ‡āļ™āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ āđ€āļžāļ·āđˆāļ­āļ—āļģāļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāđ€āļ—āļŠāļđāļ‡ Use of Calcium Carbide Residue-Fly ash as Binder to Produce High Workability Concrete

    No full text
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđƒāļŠāđ‰āļāļēāļāđāļ„āļĨāđ€āļ‹āļĩāļĒāļĄāļ„āļēāļĢāđŒāđ„āļšāļ”āđŒāļœāļŠāļĄāđ€āļ–āđ‰āļēāļ–āđˆāļēāļ™āļŦāļīāļ™āđ€āļ›āđ‡āļ™āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āđāļ—āļ™āļāļēāļĢāđƒāļŠāđ‰āļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāđƒāļ™āļāļēāļĢāļœāļĨāļīāļ•āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāļĄāļĩāļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļīāđƒāļ™āļāļēāļĢāđ€āļ—āļŠāļđāļ‡ āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āļ—āļģāļˆāļēāļāļŠāđˆāļ§āļ™āļœāļŠāļĄāļ‚āļ­āļ‡āļāļēāļāđāļ„āļĨāđ€āļ‹āļĩāļĒāļĄāļ„āļēāļĢāđŒāđ„āļšāļ”āđŒāļšāļ”āļāļąāļšāđ€āļ–āđ‰āļēāļ–āđˆāļēāļ™āļŦāļīāļ™āđ„āļĄāđˆāļšāļ” (CR-OF) āđāļĨāļ°āļāļēāļāđāļ„āļĨāđ€āļ‹āļĩāļĒāļĄāļ„āļēāļĢāđŒāđ„āļšāļ”āđŒāļšāļ”āļāļąāļšāđ€āļ–āđ‰āļēāļ–āđˆāļēāļ™āļŦāļīāļ™āļšāļ” (CR-FA) āđƒāļ™āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 30 āļ•āđˆāļ­ 70 āđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļ āļ•āļēāļĄāļĨāļģāļ”āļąāļš āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āđƒāļŠāđ‰āļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāđ€āļ›āđ‡āļ™āļŠāļēāļĢāđ€āļĢāđˆāļ‡āļāļģāļĨāļąāļ‡āđāļ—āļ™āļ—āļĩāđˆāļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āđƒāļ™āļŠāđˆāļ§āļ™āļœāļŠāļĄ CR-FA āļ—āļĩāđˆāļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 10 āđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāļ‚āļ­āļ‡āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ (CR-FA(10)) āļ—āļ”āļŠāļ­āļšāļ„āđˆāļēāļāļēāļĢāļĒāļļāļšāļ•āļąāļ§āđāļšāļšāđāļœāđˆāļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļŠāļ” āđ‚āļ”āļĒāļ„āļ§āļšāļ„āļļāļĄāļ„āđˆāļēāļāļēāļĢāļĒāļļāļšāļ•āļąāļ§āđāļšāļšāđāļœāđˆāđƒāļŦāđ‰āļ­āļĒāļđāđˆāđƒāļ™āļŠāđˆāļ§āļ‡ 600 āļ–āļķāļ‡ 800 āļĄāļīāļĨāļĨāļīāđ€āļĄāļ•āļĢ āđāļĨāļ°āļ—āļ”āļŠāļ­āļšāļāļēāļĢāļŠāļđāļāđ€āļŠāļĩāļĒāļ„āđˆāļēāļĒāļļāļšāļ•āļąāļ§āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ• āļ—āļģāļāļēāļĢāļŦāļĨāđˆāļ­āļāđ‰āļ­āļ™āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĢāļ‡āļāļĢāļ°āļšāļ­āļāļ‚āļ™āļēāļ”āđ€āļŠāđ‰āļ™āļœāđˆāļēāļ™āļĻāļđāļ™āļĒāđŒāļāļĨāļēāļ‡ 10 āļ‹āļĄ. āļŠāļđāļ‡ 20 āļ‹āļĄ. āđ‚āļ”āļĒāđ„āļĄāđˆāļĄāļĩāļāļēāļĢāļˆāļĩāđ‰āļŦāļĢāļ·āļ­āđ€āļ‚āļĒāđˆāļēāđƒāļ”āđ† āđ€āļžāļ·āđˆāļ­āļ—āļ”āļŠāļ­āļšāļāļģāļĨāļąāļ‡āļ­āļąāļ”āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāļ­āļēāļĒāļļ 3, 7, 28, 60 āđāļĨāļ° 90 āļ§āļąāļ™ āļœāļĨāļāļēāļĢāļ§āļīāļˆāļąāļĒāļžāļšāļ§āđˆāļē āļāļēāļāđāļ„āļĨāđ€āļ‹āļĩāļĒāļĄāļ„āļēāļĢāđŒāđ„āļšāļ”āđŒāļšāļ”āļœāļŠāļĄāđ€āļ–āđ‰āļēāļ–āđˆāļēāļ™āļŦāļīāļ™āļ—āļąāđ‰āļ‡āļ—āļĩāđˆāđ„āļĄāđˆāļšāļ”āđāļĨāļ°āļšāļ”āļŠāļēāļĄāļēāļĢāļ–āļ™āļģāļĄāļēāđƒāļŠāđ‰āđ€āļ›āđ‡āļ™āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āđ€āļžāļ·āđˆāļ­āļœāļĨāļīāļ•āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāļĄāļĩāļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļīāđƒāļ™āļāļēāļĢāđ€āļ—āļŠāļđāļ‡āđ„āļ”āđ‰ āđ‚āļ”āļĒāļ„āđˆāļēāļāļēāļĢāļĒāļļāļšāļ•āļąāļ§āđāļšāļšāđāļœāđˆāļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļŠāļ”āļĄāļĩāļ‚āļ™āļēāļ”āđ€āļŠāđ‰āļ™āļœāđˆāļēāļ™āļĻāļđāļ™āļĒāđŒāļāļĨāļēāļ‡āļ­āļĒāļđāđˆāđƒāļ™āļŠāđˆāļ§āļ‡āđ€āļ—āđˆāļēāļāļąāļš 740 āļ–āļķāļ‡ 760 āļĄāļĄ. āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļ„āļ­āļ™āļāļĢāļĩāļ• CR-OF, CR-FA āđāļĨāļ° CR-FA(10) āļĄāļĩāļ„āđˆāļēāļāļēāļĢāļĒāļļāļšāļ•āļąāļ§āđāļšāļšāđāļœāđˆāļ—āļĩāđˆāļŠāļđāļ‡āļāļ§āđˆāļēāļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāđƒāļŠāđ‰āļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāļ›āļ­āļĢāđŒāļ•āđāļĨāļ™āļ”āđŒāđ€āļ›āđ‡āļ™āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™ āđāļĨāļ°āļĒāļąāļ‡āļĄāļĩāļāļēāļĢāļŠāļđāļāđ€āļŠāļĩāļĒāļ„āđˆāļēāļĒāļļāļšāļ•āļąāļ§āļ—āļĩāđˆāļ™āđ‰āļ­āļĒāļāļ§āđˆāļēāļ”āđ‰āļ§āļĒ āļ„āļ­āļ™āļāļĢāļĩāļ• CR-OF āđāļĨāļ° CR-FA āđƒāļŦāđ‰āļ„āđˆāļēāļāļģāļĨāļąāļ‡āļ­āļąāļ”āđ€āļ—āđˆāļēāļāļąāļš 153 āđāļĨāļ° 225 āļāļ./āļ‹āļĄ.2 āļ—āļĩāđˆāļ­āļēāļĒāļļ 90 āļ§āļąāļ™ āļ•āļēāļĄāļĨāļģāļ”āļąāļš āđāļĄāđ‰āļ§āđˆāļēāļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āļ”āļąāļ‡āļāļĨāđˆāļēāļ§āđ„āļĄāđˆāđƒāļŠāđ‰āļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāļ›āļ­āļĢāđŒāļ•āđāļĨāļ™āļ”āđŒ āļāļēāļĢāđƒāļŠāđ‰āđ€āļ–āđ‰āļēāļ–āđˆāļēāļ™āļŦāļīāļ™āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļĨāļ°āđ€āļ­āļĩāļĒāļ”āļŠāļđāļ‡āđāļĨāļ°āļāļēāļĢāđƒāļŠāđ‰āļ›āļđāļ™āļ‹āļĩāđ€āļĄāļ™āļ•āđŒāđ€āļ›āđ‡āļ™āļŠāļēāļĢāđ€āļĢāđˆāļ‡āļāļģāļĨāļąāļ‡āļŠāļēāļĄāļēāļĢāļ–āļžāļąāļ’āļ™āļēāļāļģāļĨāļąāļ‡āļ­āļąāļ”āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āđƒāļŦāđ‰āļŠāļđāļ‡āļ‚āļķāđ‰āļ™āđ„āļ”āđ‰ āđ‚āļ”āļĒāļ„āļ­āļ™āļāļĢāļĩāļ• CR-FA(10) āđƒāļŦāđ‰āļ„āđˆāļēāļāļģāļĨāļąāļ‡āļ­āļąāļ” āđ€āļ—āđˆāļēāļāļąāļš 210 āđāļĨāļ° 252 āļāļ./āļ‹āļĄ.2 āļ—āļĩāđˆāļ­āļēāļĒāļļ 28 āđāļĨāļ° 90 āļ§āļąāļ™ āļ•āļēāļĄāļĨāļģāļ”āļąāļš āđāļĄāđ‰āļ§āđˆāļēāļ„āļ­āļ™āļāļĢāļĩāļ•āđ„āļĄāđˆāļĄāļĩāļāļēāļĢāļˆāļĩāđ‰āļŦāļĢāļ·āļ­āđ€āļ‚āļĒāđˆāļēāđƒāļ”āđ†AbstractThis research aims to use calcium carbide residue and fly ash mixture as a binder instead of using Portland cement in order to produce high workability concrete. The binder used a ratio of 30:70 by weight for ground calcium carbide residue and both original and ground fly ash, CR-OF and CR-FA, respectively. In addition, Portland cement Type I (OPC) was used as strength accelerator at a ratio of 10 percent by weight of the binder, CR-FA(10). The slump flow of all fresh concrete mixtures was determined, and was maintained between 600 to 800 mm. Furthermore, the slump loss of concrete was also determined. The cylindrical concrete specimens, 100 mm in diameter and 200 mm in height, were cast and no required vibration for placing and compaction. The compressive strengths of the concrete were tested at the ages of 3, 7, 28, 60 and 90 days. The results indicated that the calcium carbide residual and fly ash mixture could be used as a binder to produce high workability concrete with slump flow between 740 to 760 mm. In addition, CR-OF, CR-FA, and CR-FA(10) concretes had slump flow higher, and had slump loss lower than that of normal concrete which using Portland cement. The CR-OF and CR-FA concretes gave the compressive strengths of 153 and 225 ksc at 90 days although the binder without using Portland cement, respectively. The use of high fineness of fly ash and OPC strength accelerator can enhance compressive strength gain for calcium carbide residue-fly ash concrete. Although the concrete no required vibration for placing and compaction, the CR-FA(10) concrete had compressive strengths of 210 and 252 ksc at 28 and 90 days, respectively

    āđ€āļ—āļ„āļ™āļīāļ„āļāļēāļĢāļāđˆāļ­āļŠāļĢāđ‰āļēāļ‡āļāļēāļ™āļĢāļēāļāļ„āļ­āļ™āļāļĢāļĩāļ•āļ‚āļ™āļēāļ”āđƒāļŦāļāđˆ āđƒāļ™āļ‡āļēāļ™āļ­āļēāļ„āļēāļĢāļŠāļđāļ‡ Construction Technology of Mat Foundation Concrete for Tall Building

    No full text
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­āđ‚āļ”āļĒāļ—āļąāđˆāļ§āđ„āļ›āļāļēāļ™āļĢāļēāļāļ„āļ­āļ™āļāļĢāļĩāļ•āļ‚āļ™āļēāļ”āđƒāļŦāļāđˆāđ„āļ”āđ‰āļ™āļģāđ„āļ›āđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļĢāļ­āļ‡āļĢāļąāļšāļ™āđ‰āļģāļŦāļ™āļąāļāļ‚āļ­āļ‡āļ•āļąāļ§āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āđƒāļ™āļ­āļēāļ„āļēāļĢāļŠāļđāļ‡ āđ‚āļ”āļĒāļ—āļģāļŦāļ™āđ‰āļēāļ—āļĩāđˆāļ–āđˆāļēāļĒāļ™āđ‰āļģāļŦāļ™āļąāļāļˆāļēāļāđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āđ€āļŠāļēāļĨāļ‡āļŠāļđāļ‡āđ€āļŠāļēāđ€āļ‚āđ‡āļĄ āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļāļēāļ™āļĢāļēāļāļ„āļ­āļ™āļāļĢāļĩāļ•āđƒāļ™āļ­āļēāļ„āļēāļĢāļŠāļđāļ‡āđ‚āļ”āļĒāļ—āļąāđˆāļ§āđ„āļ›āļĄāļĩāļ‚āļ™āļēāļ”āļ—āļĩāđˆāđƒāļŦāļāđˆāļĄāļēāļ āļˆāļķāļ‡āļĄāļĩāļ„āļ§āļēāļĄāļŦāļ™āļēāļŠāļđāļ‡ āļ‹āļķāđˆāļ‡āļ­āļēāļˆāļŠāđˆāļ‡āļœāļĨāđƒāļŦāđ‰āđ€āļāļīāļ”āļ›āļąāļāļŦāļēāļāļēāļĢāđāļ•āļāļĢāđ‰āļēāļ§āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāļĄāļĩāļ‚āļ™āļēāļ”āđƒāļŦāļāđˆ āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļ„āļ§āļēāļĄāđāļ•āļāļ•āđˆāļēāļ‡āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāļŠāļđāļ‡āļ‚āļķāđ‰āļ™āļĢāļ°āļŦāļ§āđˆāļēāļ‡āļ—āļĩāđˆāļœāļīāļ§āļšāļ™āđāļĨāļ°āđāļāļ™āļāļĨāļēāļ‡āļ„āļ­āļ™āļāļĢāļĩāļ• āļšāļ—āļ„āļ§āļēāļĄāļ§āļīāļŠāļēāļāļēāļĢāļ™āļĩāđ‰āđ„āļ”āđ‰āđāļŠāļ”āļ‡āļāļĢāļ“āļĩāļĻāļķāļāļĐāļēāđ€āļ—āļ„āļ™āļīāļ„āļāļēāļĢāļāđˆāļ­āļŠāļĢāđ‰āļēāļ‡āļāļēāļ™āļĢāļēāļāļ„āļ­āļ™āļāļĢāļĩāļ•āļ‚āļ™āļēāļ”āđƒāļŦāļāđˆāđƒāļ™āļ‡āļēāļ™āļ­āļēāļ„āļēāļĢāļŠāļđāļ‡ āļāļēāļ™āļĢāļēāļāļ‚āļ™āļēāļ”āđƒāļŦāļāđˆāļ™āļĩāđ‰āļĄāļĩāļ„āļ§āļēāļĄāļāļ§āđ‰āļēāļ‡ 30.1 āđ€āļĄāļ•āļĢ āļĒāļēāļ§ 34.7 āđ€āļĄāļ•āļĢ āđāļĨāļ°āļĄāļĩāļ„āļ§āļēāļĄāļŦāļ™āļē 2.5 āđ€āļĄāļ•āļĢ āļĢāļ­āļ‡āļĢāļąāļšāļ™āđ‰āļģāļŦāļ™āļąāļāļ•āļąāļ§āļ­āļēāļ„āļēāļĢāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļŠāļđāļ‡ 146 āđ€āļĄāļ•āļĢ (āļˆāļģāļ™āļ§āļ™ 40 āļŠāļąāđ‰āļ™) āđāļĨāļ°āļĄāļĩāļŠāļĢāļ°āļ§āđˆāļēāļĒāļ™āđ‰āļģāļ—āļĩāđˆāļŠāļąāđ‰āļ™āļ”āļēāļ”āļŸāđ‰āļē āļ§āļīāļ˜āļĩāļāļēāļĢāļāđˆāļ­āļŠāļĢāđ‰āļēāļ‡āđƒāļ™āļ‡āļēāļ™āđ€āļ—āļ„āļ­āļ™āļāļĢāļĩāļ•āļāļēāļ™āļĢāļēāļāļ‚āļ™āļēāļ”āđƒāļŦāļāđˆāđ„āļ”āđ‰āđāļŠāļ”āļ‡āđ„āļ§āđ‰āđƒāļ™āļšāļ—āļ„āļ§āļēāļĄāļ™āļĩāđ‰āļ”āđ‰āļ§āļĒ āđ‚āļ”āļĒāđƒāļŠāđ‰āļ„āļ­āļ™āļāļĢāļĩāļ•āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ•āđˆāļģāđƒāļ™āļ›āļĢāļīāļĄāļēāļ“āļ—āļĩāđˆāļŠāļđāļ‡āļ–āļķāļ‡ 2,850 āļĄ3 āđƒāļ™āļāļēāļĢāđ€āļ—āļāļēāļ™āļĢāļēāļ āļ—āļģāļāļēāļĢāļ§āļąāļ”āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ‚āļ­āļ‡āļāļēāļ™āļĢāļēāļāļ„āļ­āļ™āļāļĢāļĩāļ•āļˆāļ™āļ–āļķāļ‡āļ­āļēāļĒāļļ 7 āļ§āļąāļ™ āļ‹āļķāđˆāļ‡āļĄāļĩāļāļēāļĢāļšāđˆāļĄāļ”āđ‰āļ§āļĒāļ‰āļ™āļ§āļ™ āļœāļĨāļāļēāļĢāļ•āļĢāļ§āļˆāļŠāļ­āļšāļžāļšāļ§āđˆāļēāļ„āļ­āļ™āļāļĢāļĩāļ•āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ•āđˆāļģāļ—āļĩāđˆāđƒāļŠāđ‰āđ€āļ–āđ‰āļēāļ–āđˆāļēāļ™āļŦāļīāļ™āđ€āļ›āđ‡āļ™āļŠāđˆāļ§āļ™āļœāļŠāļĄāđƒāļŦāđ‰āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļŠāļđāļ‡āļŠāļļāļ”āđ€āļ—āđˆāļēāļāļąāļš 76.4 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļ„āļ§āļēāļĄāđāļ•āļāļ•āđˆāļēāļ‡āļ‚āļ­āļ‡āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ—āļĩāđˆāļœāļīāļ§āđāļĨāļ°āđāļāļ™āļāļĨāļēāļ‡āļ‚āļ­āļ‡āļāļēāļ™āļĢāļēāļāļ„āļ­āļ™āļāļĢāļĩāļ•āļĄāļĩāļ„āđˆāļēāđ„āļĄāđˆāđ€āļāļīāļ™ 20 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ āļ‹āļķāđˆāļ‡āđ€āļ›āđ‡āļ™āđ„āļ›āļ•āļēāļĄāļ‚āđ‰āļ­āļāļģāļŦāļ™āļ”āļ‚āļ­āļ‡āļĢāļēāļĒāļāļēāļĢāļ›āļĢāļ°āļāļ­āļšāđāļšāļšāđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡ āđāļĨāļ°āļžāļšāļ§āđˆāļēāļāļēāļ™āļĢāļēāļāļ„āļ­āļ™āļāļĢāļĩāļ•āļ‚āļ™āļēāļ”āđƒāļŦāļāđˆāļ™āļĩāđ‰āđ„āļĄāđˆāđ€āļāļīāļ”āļ›āļąāļāļŦāļēāļāļēāļĢāđāļ•āļāļĢāđ‰āļēāļ§āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļ—āļĩāđˆāļŠāļđāļ‡āļ‚āļķāđ‰āļ™ āđ€āļĄāļ·āđˆāļ­āđƒāļŠāđ‰āđ€āļ—āļ„āļ™āļīāļ„āļāļēāļĢāļāđˆāļ­āļŠāļĢāđ‰āļēāļ‡āļāļēāļ™āļĢāļēāļāļ„āļ­āļ™āļāļĢāļĩāļ•āļ‚āļ™āļēāļ”āđƒāļŦāļāđˆāļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāļ™āļĩāđ‰AbstractThe mat foundation is generally used in tall building in order to transfer vertical load of columns down to piles. Because of the mat foundation had large dimension, especially the high thickness, the temperature rise of the concrete is concerned. Thermal cracking problem from the temperature difference between surface and centre of the mat foundation concrete has to be prevented. This paper presents a case study of construction technology for mat foundation concrete in tall building. The mat foundation had dimensions of 30.1x34.7 meter with thickness of 2.5 meter to support super structure of tall building which had total height of 146 meter (40 stories), and had sky pool at roof deck. The method statements of concrete work to construct the mat foundation were shown. The large volume of 2,850 m3 of low heat concrete is supplied to cast the mat foundation. The temperature rises of mat foundation concrete were monitored until 7 days of curing with insulation. The results indicated that the low heat concrete containing fly ash generated the highest temperature of 76.4°C. In addition, the temperature difference between surface and centre of the mat foundation concrete were not more than 20°C, within structural specification limited. As a result, the thermal cracking is not occurred in this mat foundation concrete when this method statement of construction is performed

    āļāļēāļĢāđƒāļŠāđ‰āđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļŠāļģāļŦāļĢāļąāļšāļŠāļļāļĄāļŠāļ™āđƒāļ™āļāļēāļĢāļžāļąāļ’āļ™āļēāļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāļ„āļ­āļ™āļāļĢāļĩāļ•āļšāļĨāđ‡āļ­āļāļĄāļ§āļĨāđ€āļšāļēāļˆāļēāļāđ€āļĻāļĐāļŦāļīāļ™āļšāļ°āļ‹āļ­āļĨāļ•āđŒ

    Get PDF
    āļĢāļēāļĒāļ‡āļēāļ™āļ§āļīāļˆāļąāļĒ -- āļĄāļŦāļēāļ§āļīāļ—āļĒāļēāļĨāļąāļĒāđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļĢāļēāļŠāļĄāļ‡āļ„āļĨāļžāļĢāļ°āļ™āļ„āļĢ, 2560This research aims to test the properties of concrete block mixed with basalt fragment as aggregates in products. The mix ratios of Portland cement type1 : basalt fragment : water are 1 : 10 : 0.7, 1 : 10.5 : 0.7, 1 : 11 : 0.7, 1 : 11.5 : 0.7, and 1 : 12 : 0.7 by weight. The concrete block samples were mixed and casted in 7 x 19 x 39 centimeter by the concrete block molding machine. The concrete block sample testing follows the TIS 58-2533 standard on non-load bearing concrete blocks. From the results, the density, compressive strength, and thermal conductivity of concrete block mixed with basalt fragment are lower than the common concrete block. In addition, the water absorption and volumetric change are higher than the common concrete block. The optimal ratio in this work is 1: 11: 0.7Rajamangala University of Technology Phra Nakho

    āļāļēāļĢāļžāļąāļ’āļ™āļēāļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāđāļœāđˆāļ™āļāđ‰āļēāđ€āļžāļ”āļēāļ™āļˆāļēāļāđ€āļŠāđ‰āļ™āđƒāļĒāļ›āļēāļĨāđŒāļĄāļ™āđ‰āļģāļĄāļąāļ™āļŠāļģāļŦāļĢāļąāļšāļ§āļīāļŠāļēāļŦāļāļīāļˆāļŠāļļāļĄāļŠāļ™

    Get PDF
    āļĢāļēāļĒāļ‡āļēāļ™āļ§āļīāļˆāļąāļĒ -- āļĄāļŦāļēāļ§āļīāļ—āļĒāļēāļĨāļąāļĒāđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļĢāļēāļŠāļĄāļ‡āļ„āļĨāļžāļĢāļ°āļ™āļ„āļĢ, 2560This research aims to study the using oil palm fiber to develop ceiling board product. The mixture ratios of Gypsum plaster: oil palm fiber: tap water: catalyst are 1 : 0.15 : 1: 0.03, 1 : 0.20 : 1: 0.03, 1 : 0.25 : 1: 0.03, 1 : 0.30: 1: 0.03 and 1 : 0.35 : 1: 0.03 by weight. The ceiling board samples are cast in 30 x 30 x 1 centimeter in dimension. The ceiling board sample testing follows the TIS 219-2552. The results show that the longitudinal and lateral breaking load, Nail pull resistance, density, and thermal conductivity of ceiling board with high quantity of oil palm fiber are lower than ceiling board with low quantity of oil palm fiber while that the deflection and water absorption of ceiling board with high quantity of oil palm fiber are higher. However, all of oil palm fiber samples with lower than 0.2 of ratio can pass the standard.Rajamangala University of Technology Phra Nakho
    corecore