58 research outputs found

    Reversible Integration of Microfluidic Devices with Microelectrode Arrays for Neurobiological Applications

    Get PDF
    The majority of current state-of-the-art microfluidic devices are fabricated via replica molding of the fluidic channels into PDMS elastomer and then permanently bonding it to a Pyrex surface using plasma oxidation. This method presents a number of problems associated with the bond strengths, versatility, applicability to alternative substrates, and practicality. Thus, the aim of this study was to investigate a more practical method of integrating microfluidics which is superior in terms of bond strengths, reversible, and applicable to a larger variety of substrates, including microfabricated devices. To achieve the above aims, a modular microfluidic system, capable of reversible microfluidic device integration, simultaneous surface patterning and multichannel fluidic perfusion, was built. To demonstrate the system’s potential, the ability to control the distribution of A549 cells inside a microfluidic channel was tested. Then, the system was integrated with a chemically patterned microelectrode array, and used it to culture primary, rat embryo spinal cord neurons in a dynamic fluidic environment. The results of this study showed that this system has the potential to be a cost effective and importantly, a practical means of integrating microfluidics. The system’s robustness and the ability to withstand extensive manual handling have the additional benefit of reducing the workload. It also has the potential to be easily integrated with alternative substrates such as stainless steel or gold without extensive chemical modifications. The results of this study are of significant relevance to research involving neurobiological applications, where primary cell cultures on microelectrode arrays require this type of flexible integrated solution

    Potential therapeutic applications of microbial surface-activecompounds

    Get PDF
    Numerous investigations of microbial surface-active compounds or biosurfactants over the past two decades have led to the discovery of many interesting physicochemical and biological properties including antimicrobial, anti-biofilm and therapeutic among many other pharmaceutical and medical applications. Microbial control and inhibition strategies involving the use of antibiotics are becoming continually challenged due to the emergence of resistant strains mostly embedded within biofilm formations that are difficult to eradicate. Different aspects of antimicrobial and anti-biofilm control are becoming issues of increasing importance in clinical, hygiene, therapeutic and other applications. Biosurfactants research has resulted in increasing interest into their ability to inhibit microbial activity and disperse microbial biofilms in addition to being mostly nontoxic and stable at extremes conditions. Some biosurfactants are now in use in clinical, food and environmental fields, whilst others remain under investigation and development. The dispersal properties of biosurfactants have been shown to rival that of conventional inhibitory agents against bacterial, fungal and yeast biofilms as well as viral membrane structures. This presents them as potential candidates for future uses in new generations of antimicrobial agents or as adjuvants to other antibiotics and use as preservatives for microbial suppression and eradication strategies

    Surface modification of poly(dimethylsiloxane) microchannels

    No full text
    This review looks at the efforts that are being made to modify the surface of poly(dimethylsiloxane) (PDMS) microchannels, in order to enhance applicability in the field of microfluidics. Many surface modifications of PDMS have been performed for electrophoretic separations, but new modifications are being done for emerging applications such as heterogeneous immunoassays and cell-based bioassays. These new modification techniques are powerful because they impart biospecificity to the microchannel surfaces and reduce protein adsorption. Most of these applications require the use of aqueous or polar solvents, which makes surface modification a very important topic.X11414sciescopu

    Surface Modification, Methods

    No full text

    Plasma in Microchannel

    No full text
    corecore