82 research outputs found

    The Dantu blood group prevents parasite growth in vivo: Evidence from a controlled human malaria infection study

    Get PDF
    Background: The long co-evolution of Homo sapiens and Plasmodium falciparum has resulted in the selection of numerous human genetic variants that confer an advantage against severe malaria and death. One such variant is the Dantu blood group antigen, which is associated with 74% protection against severe and complicated P. falciparum malaria infections in homozygous individuals, similar to that provided by the sickle haemoglobin allele (HbS). Recent in vitro studies suggest that Dantu exerts this protection by increasing the surface tension of red blood cells, thereby impeding the ability of P. falciparum merozoites to invade them and reducing parasite multiplication. However, no studies have yet explored this hypothesis in vivo. Methods: We investigated the effect of Dantu on early phase P. falciparum (Pf) infections in a controlled human malaria infection (CHMI) study. 141 sickle-negative Kenyan adults were inoculated with 3.2 × 103 aseptic, purified, cryopreserved Pf sporozoites (PfSPZ Challenge) then monitored for blood-stage parasitaemia for 21 days by quantitative polymerase chain reaction (qPCR)analysis of the 18S ribosomal RNA P. falciparum gene. The primary endpoint was blood-stage P. falciparum parasitaemia of ≥500/μl while the secondary endpoint was the receipt of antimalarial treatment in the presence of parasitaemia of any density. On study completion, all participants were genotyped both for Dantu and for four other polymorphisms that are associated with protection against severe falciparum malaria: α+-thalassaemia, blood group O, G6PD deficiency, and the rs4951074 allele in the red cell calcium transporter ATP2B4. Results: The primary endpoint was reached in 25/111 (22.5%) non-Dantu subjects in comparison to 0/27 (0%) Dantu heterozygotes and 0/3 (0.0%) Dantu homozygotes (p=0.01). Similarly, 49/111 (44.1%) non-Dantu subjects reached the secondary endpoint in comparison to only 7/27 (25.9%) and 0/3 (0.0%) Dantu heterozygotes and homozygotes, respectively (p=0.021). No significant impacts on either outcome were seen for any of the other genetic variants under study. Conclusions: This study reveals, for the first time, that the Dantu blood group is associated with high-level protection against early, non-clinical, P. falciparum malaria infections in vivo. Learning more about the mechanisms involved could potentially lead to new approaches to the prevention or treatment of the disease. Our study illustrates the power of CHMI with PfSPZ Challenge for directly testing the protective impact of genotypes previously identified using other methods

    Genetic determinants of glucose-6-phosphate dehydrogenase activity in Kenya

    Get PDF
    Background: The relationship between glucose-6-phosphate dehydrogenase (G6PD) deficiency and clinical phenomena such as primaquine-sensitivity and protection from severe malaria remains poorly defined, with past association studies yielding inconsistent and conflicting results. One possibility is that examination of a single genetic variant might underestimate the presence of true effects in the presence of unrecognized functional allelic diversity. Methods: We systematically examined this possibility in Kenya, conducting a fine-mapping association study of erythrocyte G6PD activity in 1828 Kenyan children across 30 polymorphisms at or around the G6PD locus. Results: We demonstrate a strong functional role for c.202G>A (rs1050828), which accounts for the majority of variance in enzyme activity observed (P=1.5 × 10-200, additive model). Additionally, we identify other common variants that exert smaller, intercorrelated effects independent of c.202G>A, and haplotype analyses suggest that each variant tags one of two haplotype motifs that are opposite in sequence identity and effect direction. We posit that these effects are of biological and possible clinical significance, specifically noting that c.376A>G (rs1050829) augments 202AG heterozygote risk for deficiency trait by two-fold (OR = 2.11 [1.12 - 3.84], P=0.014). Conclusions: Our results suggest that c.202G>A is responsible for the majority of the observed prevalence of G6PD deficiency trait in Kenya, but also identify a novel role for c.376A>G as a genetic modifier which marks a common haplotype that augments the risk conferred to 202AG heterozygotes, suggesting that variation at both loci merits consideration in genetic association studies probing G6PD deficiency-associated clinical phenotypes. </p

    β-Thalassemia pathogenic variants in a cohort of children from the East African coast

    Get PDF
    BACKGROUND: β-Thalassemia is rare in sub-Saharan Africa. Previous studies have suggested that it is limited to specific parts of West Africa. Based on hemoglobin A2 (HbA2 ) concentrations measured by HPLC, we recently speculated that β-thalassemia might also be present on the East African coast of Kenya. Here, we follow this up using molecular methods. METHODS: We used raised hemoglobin A2 (HbA2 ) values (> 4.0% of total Hb) to target all HbAA members of a cohort study in Kilifi, Kenya, for HBB sequencing for β-thalassemia (n = 99) together with a sample of HbAA subjects with lower HbA2 levels. Because HbA2 values are artifactually raised in subjects carrying sickle hemoglobin (HbS) we sequenced all participants with an HPLC pattern showing HbS without HbA (n = 116) and a sample with a pattern showing both HbA and HbS. RESULTS: Overall, we identified 83 carriers of four separate β-thalassemia pathogenic variants: three β0 -thalassemia [CD22 (GAA→TAA), initiation codon (ATG→ACG), and IVS1-3' end del 25bp] and one β+ -thalassemia pathogenic variants (IVS-I-110 (G→A)). We estimated the minimum allele frequency of all variants combined within the study population at 0.3%. CONCLUSIONS: β-Thalassemia is present in Kilifi, Kenya, an observation that has implications for the diagnosis and clinical care of children from the East Africa region

    The impact of malaria-protective red blood cell polymorphisms on parasite biomass in children with severe Plasmodium falciparum malaria

    Get PDF
    Severe falciparum malaria is a major cause of preventable child mortality in sub-Saharan Africa. Plasma concentrations of P. falciparum Histidine-Rich Protein 2 (PfHRP2) have diagnostic and prognostic value in severe malaria. We investigate the potential use of plasma PfHRP2 and the sequestration index (the ratio of PfHRP2 to parasite density) as quantitative traits for case-only genetic association studies of severe malaria. Data from 2198 Kenyan children diagnosed with severe malaria, genotyped for 14 major candidate genes, show that polymorphisms in four major red cell genes that lead to hemoglobin S, O blood group, α-thalassemia, and the Dantu blood group, are associated with substantially lower admission plasma PfHRP2 concentrations, consistent with protective effects against extensive parasitized erythrocyte sequestration. In contrast the known protective ATP2B4 polymorphism is associated with higher plasma PfHRP2 concentrations, lower parasite densities and a higher sequestration index. We provide testable hypotheses for the mechanism of protection of ATP2B4

    The epidemiology of sickle cell disease in children recruited in infancy in Kilifi, Kenya: a prospective cohort study.

    Get PDF
    BACKGROUND: Sickle cell disease is the most common severe monogenic disorder in humans. In Africa, 50-90% of children born with sickle cell disease die before they reach their fifth birthday. In this study, we aimed to describe the comparative incidence of specific clinical outcomes among children aged between birth and 5 years with and without sickle cell disease, who were resident within the Kilifi area of Kenya. METHODS: This prospective cohort study was done on members of the Kilifi Genetic Birth Cohort Study (KGBCS) on the Indian Ocean coast of Kenya. Recruitment to the study was facilitated through the Kilifi Health and Demographic Surveillance System (KHDSS), which covers a resident population of 260 000 people, and was undertaken between Jan 1, 2006, and April 30, 2011. All children who were born within the KHDSS area and who were aged 3-12 months during the recruitment period were eligible for inclusion. Participants were tested for sickle cell disease and followed up for survival status and disease-specific admission to Kilifi County Hospital by passive surveillance until their fifth birthday. Children with sickle cell disease were offered confirmatory testing and care at a dedicated outpatient clinic. FINDINGS: 15 737 infants were recruited successfully to the KGBCS, and 128 (0·8%) of these infants had sickle cell disease, of whom 70 (54·7%) enrolled at the outpatient clinic within 12 months of recruitment. Mortality was higher in children with sickle cell disease (58 per 1000 person-years of observation, 95% CI 40-86) than in those without sickle cell disease (2·4 per 1000 person-years of observation, 2·0-2·8; adjusted incidence rate ratio [IRR] 23·1, 95% CI 15·1-35·3). Among children with sickle cell disease, mortality was lower in those who enrolled at the clinic (adjusted IRR 0·26, 95% CI 0·11-0·62) and in those with higher levels of haemoglobin F (HbF; adjusted IRR 0·40, 0·17-0·94). The incidence of admission to hospital was also higher in children with sickle cell disease than in children without sickle cell disease (210 per 1000 person-years of observation, 95% CI 174-253, vs 43 per 1000 person-years of observation, 42-45; adjusted IRR 4·80, 95% CI 3·84-6·15). The most common reason for admission to hospital among those with sickle cell disease was severe anaemia (incidence 48 per 1000 person-years of observation, 95% CI 32-71). Admission to hospital was lower in those with a recruitment HbF level above the median (IRR 0·43, 95% CI 0·24-0·78; p=0·005) and those who were homozygous for α-thalassaemia (0·07, 0·01-0·83; p=0·035). INTERPRETATION: Although morbidity and mortality were high in young children with sickle cell disease in this Kenyan cohort, both were reduced by early diagnosis and supportive care. The emphasis must now move towards early detection and prevention of long-term complications of sickle cell disease. FUNDING: Wellcome Trust

    Case report: β-thalassemia major on the East African coast

    Get PDF
    Background: β-thalassemia is rare in sub-Saharan Africa and to our knowledge there has been no case of homozygous β-thalassemia major reported from this region. In a recent cohort study, we identified four β-thalassemia mutations among 83 heterozygous carriers in Kilifi, Kenya. One of the mutations identified was a rare β-globin gene initiation codon mutation (ATG➝ACG) (rs33941849). Here we present a patient with β-thalassemia major resulting from this mutation, only the second homozygous patient to have been reported. Methods: The female patient presented to Kilifi County Hospital aged two years with a one week left sided abdominal swelling. Clinical, hematological and genetic information were collected at admission and follow-up. Results: Admission bloods revealed marked anemia, with a hemoglobin (Hb) value of 6.6 g/dL and a low mean corpuscular volume of 64 fL. High performance liquid chromatography (HPLC) revealed the absence of HbA0 and elevated levels of HbF, suggesting a diagnosis of β-thalassemia major. Sequencing revealed that the child was homozygous for the rs33941849 initiation codon mutation. Conclusions: We hope that this study will create awareness regarding the presence of β-thalassemia as a potential public health problem in the East Africa region and will prompt the development of local guidelines regarding the diagnosis and management of this condition

    Red blood cell tension protects against severe malaria in the Dantu blood group.

    Get PDF
    Malaria has had a major effect on the human genome, with many protective polymorphisms-such as the sickle-cell trait-having been selected to high frequencies in malaria-endemic regions1,2. The blood group variant Dantu provides 74% protection against all forms of severe malaria in homozygous individuals3-5, a similar degree of protection to that afforded by the sickle-cell trait and considerably greater than that offered by the best malaria vaccine. Until now, however, the protective mechanism has been unknown. Here we demonstrate the effect of Dantu on the ability of the merozoite form of the malaria parasite Plasmodium falciparum to invade red blood cells (RBCs). We find that Dantu is associated with extensive changes to the repertoire of proteins found on the RBC surface, but, unexpectedly, inhibition of invasion does not correlate with specific RBC-parasite receptor-ligand interactions. By following invasion using video microscopy, we find a strong link between RBC tension and merozoite invasion, and identify a tension threshold above which invasion rarely occurs, even in non-Dantu RBCs. Dantu RBCs have higher average tension than non-Dantu RBCs, meaning that a greater proportion resist invasion. These findings provide both an explanation for the protective effect of Dantu, and fresh insight into why the efficiency of P. falciparum invasion might vary across the heterogenous populations of RBCs found both within and between individuals.JCR, AM and DK were supported by the Wellcome Trust (206194/Z/17/Z). MPW is funded by a Wellcome Senior Fellowship (108070). TNW is funded through Fellowships awarded by the Wellcome Trust (091758 and 202800). SNK is supported by the Wellcome Trust-funded Initiative to Develop African Research Leaders (IDeAL) early-career postdoctoral fellowship (107769/Z/10/Z), supported through the DELTAS Africa Initiative (DEL-15-003). The Wellcome Trust provides core support to The KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya (084535), Wellcome Sanger Institute, Cambridge, UK (206194/Z/17/Z) and the Wellcome Centre for Human Genetics, Oxford, UK (090532/Z/09/Z, 203141). PC is supported by the Engineering and Physical Sciences Research Council (EPSRC) (EP/R011443/1), and VI is supported by the EPSRC and the Sackler fellowship

    Controlled Human Malaria Infection in Semi-Immune Kenyan Adults (CHMI-SIKA): a study protocol to investigate in vivo Plasmodium falciparum malaria parasite growth in the context of pre-existing immunity [version 2; peer review: 2 approved]

    Get PDF
    Malaria remains a major public health burden despite approval for implementation of a partially effective pre-erythrocytic malaria vaccine. There is an urgent need to accelerate development of a more effective multi-stage vaccine. Adults in malaria endemic areas may have substantial immunity provided by responses to the blood stages of malaria parasites, but field trials conducted on several blood-stage vaccines have not shown high levels of efficacy. We will use the controlled human malaria infection (CHMI) models with malaria-exposed volunteers to identify correlations between immune responses and parasite growth rates in vivo. Immune responses more strongly associated with control of parasite growth should be prioritized to accelerate malaria vaccine development. We aim to recruit up to 200 healthy adult volunteers from areas of differing malaria transmission in Kenya, and after confirming their health status through clinical examination and routine haematology and biochemistry, we will comprehensively characterize immunity to malaria using >100 blood-stage antigens. We will administer 3,200 aseptic, purified, cryopreserved Plasmodium falciparum sporozoites (PfSPZ Challenge) by direct venous inoculation. Serial quantitative polymerase chain reaction to measure parasite growth rate in vivo will be undertaken. Clinical and laboratory monitoring will be undertaken to ensure volunteer safety. In addition, we will also explore the perceptions and experiences of volunteers and other stakeholders in participating in a malaria volunteer infection study. Serum, plasma, peripheral blood mononuclear cells and whole blood will be stored to allow a comprehensive assessment of adaptive and innate host immunity. We will use CHMI in semi-immune adult volunteers to relate parasite growth outcomes with antibody responses and other markers of host immunity. / Registration: ClinicalTrials.gov identifier NCT02739763

    The Childhood Acute Illness and Nutrition (CHAIN) network nested case-cohort study protocol: a multi-omics approach to understanding mortality among children in sub-Saharan Africa and South Asia

    Get PDF
    Introduction: Many acutely ill children in low- and middle-income settings have a high risk of mortality both during and after hospitalisation despite guideline-based care. Understanding the biological mechanisms underpinning mortality may suggest optimal pathways to target for interventions to further reduce mortality. The Childhood Acute Illness and Nutrition (CHAIN) Network ( www.chainnnetwork.org) Nested Case-Cohort Study (CNCC) aims to investigate biological mechanisms leading to inpatient and post-discharge mortality through an integrated multi-omic approach. Methods and analysis; The CNCC comprises a subset of participants from the CHAIN cohort (1278/3101 hospitalised participants, including 350 children who died and 658 survivors, and 270/1140 well community children of similar age and household location) from nine sites in six countries across sub-Saharan Africa and South Asia. Systemic proteome, metabolome, lipidome, lipopolysaccharides, haemoglobin variants, toxins, pathogens, intestinal microbiome and biomarkers of enteropathy will be determined. Computational systems biology analysis will include machine learning and multivariate predictive modelling with stacked generalization approaches accounting for the different characteristics of each biological modality. This systems approach is anticipated to yield mechanistic insights, show interactions and behaviours of the components of biological entities, and help develop interventions to reduce mortality among acutely ill children. Ethics and dissemination. The CHAIN Network cohort and CNCC was approved by institutional review boards of all partner sites. Results will be published in open access, peer reviewed scientific journals and presented to academic and policy stakeholders. Data will be made publicly available, including uploading to recognised omics databases. Trial registration NCT03208725
    corecore