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Abstract
Background: The long co- evolution of Homo sapiens and Plasmodium falciparum has resulted in the 
selection of numerous human genetic variants that confer an advantage against severe malaria and 
death. One such variant is the Dantu blood group antigen, which is associated with 74% protection 
against severe and complicated P. falciparum malaria infections in homozygous individuals, similar 
to that provided by the sickle haemoglobin allele (HbS). Recent in vitro studies suggest that Dantu 
exerts this protection by increasing the surface tension of red blood cells, thereby impeding the 
ability of P. falciparum merozoites to invade them and reducing parasite multiplication. However, no 
studies have yet explored this hypothesis in vivo.
Methods: We investigated the effect of Dantu on early phase P. falciparum (Pf) infections in a 
controlled human malaria infection (CHMI) study. 141 sickle- negative Kenyan adults were inoculated 
with 3.2 × 103 aseptic, purified, cryopreserved Pf sporozoites (PfSPZ Challenge) then monitored 
for blood- stage parasitaemia for 21 days by quantitative polymerase chain reaction (qPCR)analysis 
of the 18S ribosomal RNA P. falciparum gene. The primary endpoint was blood- stage P. falciparum 
parasitaemia of ≥500/μl while the secondary endpoint was the receipt of antimalarial treatment in 
the presence of parasitaemia of any density. On study completion, all participants were genotyped 
both for Dantu and for four other polymorphisms that are associated with protection against severe 
falciparum malaria: α+- thalassaemia, blood group O, G6PD deficiency, and the rs4951074 allele in 
the red cell calcium transporter ATP2B4.
Results: The primary endpoint was reached in 25/111 (22.5%) non- Dantu subjects in comparison 
to 0/27 (0%) Dantu heterozygotes and 0/3 (0.0%) Dantu homozygotes (p=0.01). Similarly, 49/111 
(44.1%) non- Dantu subjects reached the secondary endpoint in comparison to only 7/27 (25.9%) and 
0/3 (0.0%) Dantu heterozygotes and homozygotes, respectively (p=0.021). No significant impacts on 
either outcome were seen for any of the other genetic variants under study.
Conclusions: This study reveals, for the first time, that the Dantu blood group is associated with 
high- level protection against early, non- clinical, P. falciparum malaria infections in vivo. Learning 
more about the mechanisms involved could potentially lead to new approaches to the prevention or 
treatment of the disease. Our study illustrates the power of CHMI with PfSPZ Challenge for directly 
testing the protective impact of genotypes previously identified using other methods.
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Editor's evaluation
The large genetic association studies conducted in East Africa have shown that the Dantu blood 
group provides substantial protection against severe malaria since it increases the surface tension of 
red blood cells making it harder for malaria parasites to invade. In this important work, the authors 
show that parasite growth is indeed restricted in vivo by testing this hypothesis in adult Kenyan 
volunteers infected with P. falciparium under careful monitoring. They were able to show convinc-
ingly that indeed, parasite growth was reduced amongst Dantu adults.

Introduction
Plasmodium falciparum malaria has been the pre- eminent cause of child morbidity and mortality in 
the tropics and sub- tropics for much of the last 5000 y. As a consequence, it has had a substantial 
impact on the human genome through the positive selection of multiple polymorphisms that confer 
a survival advantage against the disease (Williams, 2017). The best studied affect the biology of red 
blood cells (RBCs), which host malaria parasites for most of their life cycle in humans, the rs334 A>T 
βs sickle mutation in HBB (Williams, 2016), α-thalassaemia (Williams et al., 2005), and blood group 
O (Fry et al., 2008) all being important examples.

Recently, we identified a new variant which is associated with high- level protection against severe 
P. falciparum malaria to a degree that is close to that of sickle cell trait (HbAS), the strongest malaria- 
protective condition yet described (Malaria Genomic Epidemiology Network, 2014). The rare Dantu 
blood group antigen, which results from a genetic rearrangement within the glycophorin (GYP) cluster, 
was shown to confer 74% protection against severe malaria in homozygous individuals (Band et al., 
2015; Ndila et al., 2018). Subsequent in vitro studies have suggested that this protection is explained 
by the resistance of Dantu RBCs to invasion by P. falciparum merozoites (Kariuki et al., 2020), thereby 
preventing infections from progressing to become severe or ultimately fatal. However, this hypothesis 
has not been tested directly in vivo to date.

In this study, we have investigated the impact of the Dantu blood group on in vivo P. falciparum 
parasite growth and clinical disease progression through a controlled human malaria infection (CHMI) 
study with aseptic, purified, cryopreserved P. falciparum sporozoites (PfSPZ Challenge) conducted in 
semi- immune Kenyan adults. To the best of our knowledge, this is the first time that CHMI has been 
used to directly explore the impact of Dantu on parasite growth in vivo.

Methods
Study design and population
The primary aim of the Kenya CHMI study was to investigate the impacts of naturally acquired immu-
nity on early- phase malaria infections (Kapulu et al., 2018; Kapulu et al., 2021). Briefly, 161 healthy 
adult volunteers living in areas of varying malaria transmission were inoculated by direct venous inoc-
ulation (DVI) with 3.2 × 103   P. falciparum sporozoites (PfSPZ) of Sanaria PfSPZ Challenge (NF54) 
(Roestenberg et al., 2013; Mordmüller et al., 2015). With a sample size of 161 individuals, we had 
80% power to detect a single variable with an effect size (r2) of 0.3 that accounts for 15% of the vari-
ability in parasite growth, as previously described (Kapulu et al., 2018; Kapulu et al., 2021). Because 
of its major impacts on both malaria susceptibility (Allison, 1954) and disease progression (Taylor 
et al., 2012), and in view of results from a previous CHMI with PfSPZ Challenge conducted in Gabon 
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(Lell et al., 2018), recruitment was restricted to those who were negative for both sickle cell trait and 
disease. After inoculation, venous blood samples were collected twice daily from days 7–14, and then 
once every day from day 15 until the end of the experiment on day 21, and screened for parasitaemia 
by quantitative polymerase chain reaction (qPCR) analysis of the P. falciparum 18S ribosomal RNA 
gene. For each participant, the endpoint was considered met, and anti- malarial treatment admin-
istered, when a threshold of 500 P. falciparum parasites/µl was reached. Participants were treated 
earlier if signs and symptoms were observed in association with blood film positivity at any parasite 
density, and on day 21 post- inoculation regardless of outcome. While qPCR was used as the primary 
measurement of parasitaemia because it is much more sensitive than microscopy at low density (Bejon 
et al., 2006), thick film blood smears were also performed as an additional precaution, and partici-
pants were treated if they became blood film positive at any density, an approach that accords with 
that used in other CHMI studies (Sheehy et al., 2012; Murphy et al., 2012; Hodgson et al., 2014; 
Kamau et al., 2014; Hodgson et al., 2015; Seilie et al., 2019; Salkeld et al., 2022). Participants 
were recruited during 2016, 2017, and 2018 into three successive cohorts from three different malaria 
transmission zones: Kilifi North (no- to low- transmission) and Kilifi South (moderate transmission), 
both on the coast, and Ahero (moderate to high transmission) in Western Kenya. We tested for anti-
malarial drugs as described in a previous publication (Kapulu et al., 2021). Briefly, antimalarial drugs 
were measured retrospectively in all volunteers using samples collected on both the day before the 
challenge and 8 days after challenge. Plasma samples were tested by liquid chromatography- tandem 
mass spectrometry in two independent laboratories. Sulfadoxine, pyrimethamine, and chloroquine 
levels were measured at the Strathmore University in Nairobi, Kenya, while artemether and dihydroar-
temisinin concentrations were measured at the Mahidol Oxford Tropical Medicine Research Unit in 
Bangkok, Thailand. The study was conducted at the KEMRI- Wellcome Trust Research Programme in 
Kilifi, Kenya, and was registered on  ClinicalTrials. gov (NCT02739763).

Genotyping for Dantu and other malaria-protective variants
Whole blood samples were collected at the point of recruitment into tubes containing EDTA and 
stored at –80°C pending batch processing at the end of the study. Genomic DNA was extracted 
following the manufacturer’s instructions using a QIAmp 96 DNA QIAcube HT kit on a QIAcube HT 
System (QIAGEN, Manchester, UK). Genotyping for Dantu was performed using ABI TaqMan SNP 
genotyping Assays- by- Design primers and probes on an ABI 7900HT PCR machine, as previously 
described (Kariuki et al., 2009). Dantu genotypes were inferred from the rs186873296 FREM3 allele, 
which is in strong linkage disequilibrium with the Dantu structural rearrangement (Band et al., 2015). 
The following primer sequence was used for the rs186873296 SNP:  ATGT  GAAG  AAGC  TGGG  AACC  
CTGT C[A/G] TACA  AGAA  ATGA  CAAA  GAAA  GCTT , with A being the reference allele. For comparative 
purposes, we also genotyped participants for a range of other polymorphisms that have been repro-
ducibly associated with protection from severe and complicated malaria in other studies. We typed 
for the common African form of G6PD deficiency, caused by the G6PD c.202T mutation (Clarke et al., 
2017), the blood group O mutation in ABO (Rowe et al., 2007) and the rs4951074 allele in ATP2B4 
(Malaria Genomic Epidemiology Network, 2014) using TaqMan SNP genotyping assays, and for the 
-α3.7I deletional form of α+- thalassaemia by gap PCR (Wambua et al., 2006). To aid ease of compar-
ison across all variants tested, the genotype groups are categorised as ‘Homozygous reference’ for 
individuals with two copies of the reference allele, ‘Heterozygous’ for individuals with one copy of the 
reference allele and one copy of the derived allele, and ‘Homozygous derived’ for individuals with two 
copies of the derived allele.

Statistical analysis
We considered three distinct outcomes, each capturing a different aspect of the parasitological and 
clinical progress of malaria infections: (a) whether infections progressed to reach the pre- defined 
treatment threshold of 500 parasites/µl; (b) whether or not participants received malaria treatment 
for either clinical or parasitological reasons; (c) the time from inoculation to treatment in participants 
who did receive treatment. We made (a) the primary endpoint for this analysis because the hypoth-
esis we were testing concerned in vivo parasite growth rather than susceptibility to symptoms. We 
conducted between- genotype comparisons both by univariate analysis and by multivariate anal-
ysis with adjustment for other malaria- protective genes, anti- schizont antibody concentration, and 
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location of residence, of which the latter two were significantly associated with the same outcomes 
in an earlier analysis of the same cohort (Kapulu et al., 2022). We used the Fisher’s exact test using 
the fmsb package (version 0.7.3) in R to test for any differences in the proportions of individuals that 
reached the pre- defined treatment threshold of 500 parasites/μl and to test for any differences in the 
proportions of individuals that required treatment across genotype groups. We also compared the 
treatment outcomes for the heterozygous- and homozygous- derived genotypes, individually, to the 
homozygous reference genotype by pairwise analysis.

To test for associations between each variant genotype and the treated or untreated categor-
ical outcome, we used multivariate logistic regression using the glm function in the stats package 
(version 3.6.2) in R using additive models for each variant, where each variant genotype was coded 
as zero, one, or two copies of the derived allele. Each multivariable model adjusted for other malaria- 
protective variants, anti- schizont antibody concentration, and location of residence.

We used the Kruskal–Wallis test (stats package version 3.6.2) and the Dunn’s test (FSA package 
version 0.9.3) to investigate between- group differences in maximum parasitaemia. Finally, we 
compared time to treatment using Kaplan–Meier survival curves with univariate comparisons across 
genotype groups performed using the Log- Rank test, and Cox regression models for multivariate 
analyses, using the survival package (version 3.2.13) in R. All statistical analyses were performed using 
R V3.6.2 (R Development Core Team, 2017).

Results
Of 161 volunteers recruited to the study, 19 were excluded, either because non- CHMI parasite strains 
were detected in post- CHMI samples (suggesting the presence of coincidental natural infections) (n 
= 7), or because antimalarial drugs were detected in pre- CHMI samples (n = 12) (Figure 1) (Kapulu 
et al., 2021). After these exclusions, data from 142 individuals contributed to the current analysis. 
Genotyping revealed that 30 of these individuals were either heterozygous or homozygous for the 
Dantu allele. We did not get Dantu genotype data on one individual due to poor quality of the DNA 
sample; therefore, Dantu genotype data on 141 out of the 142 participants was used in the down-
stream analysis (Figure 1).

The Dantu variant protects against P. falciparum growth in vivo
While infections progressed to the point of reaching the pre- determined treatment threshold of 500 
parasites/µl in 25/142 (17.6%) of all volunteers, the proportions varied markedly by Dantu genotype. 
None of the thirty (0.0%) Dantu carriers reached this threshold in comparison to 25/111 (22.5%) of 
the non- Dantu individuals (p=0.01) (Figure 2, Table 1). The difference in the proportion of Dantu 
heterozygous (0/27; 0%) and non- Dantu individuals reaching the treatment threshold was strongly 
significant (p=0.004) but did not reach statistical significance in the case of Dantu homozygotes 0/3 
(0.0%) because of the small number of individuals in this group.

Fewer Dantu carriers required malaria treatment
Although a threshold of 500 parasites/μl was considered the primary endpoint of the study and trig-
gered the administration of antimalarial treatment per- protocol, some participants developed symp-
toms and were therefore treated before reaching this parasitaemia threshold. Only one quarter (7/27; 
25.9%) of the Dantu heterozygotes and none (0/3; 0.0%) of the Dantu homozygotes (Figure 3, Table 2) 
received antimalarial treatment in comparison to 49/111 (44.1%) of the non- Dantu individuals. While 
this did not reach statistical significance on univariate analysis, we carried out multivariate regression 
analysis with the treated or untreated status as the dependent variable, and the Dantu variant as well 
as other genetic variants (as described below), anti- schizont antibody and location of residence as the 
independent variables. This analysis revealed that Dantu- carrying subjects overall were administered 
antimalarial treatment 83% less frequently (OR 0.17; 95%  CI 0.04–0.55; p=0.007) than non- Dantu 
individuals (Table 3). In order to address the core issue of whether prior immunity was a confounder 
in our analysis, we used measurements of antibodies to whole schizont extract as a proxy indicator 
of transmission setting or ‘malaria exposure’ in our multivariate analyses. We compared anti- schizont 
antibody levels across Dantu genotype groups and found no differences (p=0.659) (Figure 3—figure 
supplement 1).

https://doi.org/10.7554/eLife.83874
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Peak parasitaemias were lower in Dantu-carrying participants
The proportion of participants who became PCR- positive at any parasitaemia was similar at 86/111 
(77.5%) in the non- Dantu and 20/27 (74.1%) and 2/3 (66.7%) among Dantu heterozygotes and homozy-
gotes, respectively (p=0.745) (Figure 4). However, maximum parasitaemias were considerably higher 
in non- Dantu than in Dantu- carrying individuals. Peak parasitaemias reached 9694 parasites/μl in the 
non- Dantu group in comparison with 411 parasites/μl in the Dantu heterozygotes and only 3 para-
sites/μl among the Dantu homozygotes (non- Dantu vs. Dantu heterozygotes p=0.028; non- Dantu vs. 

161 participants enrolled for CHMI: 
- Ahero - moderate to high malaria transmission (n=15)
- Kilifi South - moderate malaria transmission (n=111)
- Kilifi North - low to no malaria transmission (n=35)    

142 participants included for qPCR analysis

19 participants excluded due to:
- Presence of non-challenge parasite strain (n=7)
- Elevated anti-malarial drugs in plasma (n=12)

Direct venous inoculation with 3.2x103 
Plasmodium falciparum sporozoites (PfSPZ) 

161 participants completed CHMI

1 participant excluded due to unsuccessful 
genotyping for Dantu

Figure 1. Study design and participant recruitment.
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Figure 2. The impact of human genotype on parasite growth. Following inoculation of volunteers with Pf sporozoites, parasitaemia was monitored 
by quantitative PCR (y- axis) over the full duration of the study (x- axis). The different panels indicate the specific variants that were studied. The red 
dots indicate only the individuals that exhibited febrile symptoms and met treatment criteria. The different genotype groups for all the variants are 
categorised as ‘Homozygous reference’ for individuals with two copies of the reference allele (red lines), ‘Heterozygous’ for individuals with one copy 
of the reference allele and one copy of the derived allele (green lines), and ‘Homozygous derived’ for individuals with two copies of the derived allele 
(blue lines). αα/αα, no α-thalassaemia; −α/αα, heterozygous α-thalassaemia; −α/−α, homozygous α-thalassaemia. * For G6PD, male and female were 
combined as C/CC = normal (wild type hemizygous males and homozygous females), CT = carrier females, and T/TT = G6PD- deficient hemizygous 
males and homozygous females. All volunteers were typed for all variants, and any one individual may carry a mixture of genotypes – the potential 

Figure 2 continued on next page
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confounding effect of this was controlled for in multivariate analysis. The tables adjacent to each plot show the results from Fisher’s exact tests 
investigating differences in the proportion of participants that reached the pre- defined treatment threshold of 500 parasites/μl (n) compared to the total 
number within each genotype category (N).

The online version of this article includes the following source data for figure 2:

Source data 1. Related to Figure 2.

Source data 2. Related to Figure 2 table.

Figure 2 continued

Table 1. The proportion of participants reaching the pre- defined treatment parasitaemia threshold 
of 500 parasites/μl by genotype category.
 

Variant Genotype n/N %
p value 
overall

p value 
homozygous 
reference vs. 
heterozygous

p value 
homozygous 
reference vs. 
homozygous 
derived

Dantu rs186873296 Non- Dantu (AA) 25/111 22.5 0.01 0.004 1

Heterozygous (AG) 0/27 0.0

Dantu homozygous 
(GG) 0/3 0.0

G6PD +202 
rs1050828

Homozygous 
reference (C/CC) 20/110 18.2 0.505 0.739 0.463

Heterozygous (CT) 4/17 23.5

Homozygous derived 
(T/TT) 1/15 6.7

ABO rs8176719 Non- O 13/64 20.3 0.517 0.517 -

O 12/75 16.0

α-thalassaemia
Homozygous 
reference (αα/αα) 6/48 12.5 0.408 0.328 0.29

Heterozygous (−α/αα) 14/70 20.0

Homozygous derived 
(−α/−α) 5/21 23.8

ATP2B4 rs4951074
Homozygous 
reference (GG) 11/62 17.7 0.876 1 0.749

Heterozygous (AG) 11/57 19.3

Homozygous derived 
(AA) 3/23 13.0

n = the number of participants that reached the pre- defined treatment threshold of 500 parasites/μl and were 
treated; N = the total number within each genotype category; αα/αα, no α-thalassaemia; −α/αα, heterozygous 
α-thalassaemia; −α/−α, homozygous α-thalassaemia. * For G6PD, male and female were combined as C/
CC = normal (wild type hemizygous males and homozygous females), CT = carrier females, and T/TT = G6PD 
-deficient hemizygous males and homozygous females. We used the Fisher’s exact test to investigate differences 
in the proportions of individuals that reached the pre- defined treatment threshold of 500 parasites/μl, both for 
global comparisons across genotype groups, and for separate comparisons between genotype pairs, where 
the proportion of individuals that reached the treatment threshold of 500 parasites/μl in the heterozygous- and 
homozygous -derived genotypes were compared to the homozygous reference genotype.

The online version of this article includes the following source data for table 1:

Source data 1. Related to Table 1.

https://doi.org/10.7554/eLife.83874
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Dantu homozygotes p=0.141; and non- Dantu vs. Dantu heterozygotes and homozygotes combined 
p=0.009) (Figure 4). Similarly, the median parasitaemia among those who did become PCR- positive 
was 112 parasites/μl in the non- Dantu, 13 parasites/μl in the Dantu heterozygous, and 2 parasites/μl in 
the Dantu homozygous groups, respectively, although these differences did not reach statistical signif-
icance (non- Dantu vs. Dantu heterozygotes p=0.108; non- Dantu vs. Dantu homozygotes p=0.256; 
and non- Dantu vs. combined Dantu heterozygotes and homozygotes p=0.068) (Figure 4).

Time to treatment was significantly longer in Dantu-carrying than non-
Dantu individuals
Among the participants who did receive treatment, the time to treatment was significantly longer 
among Dantu- carrying than non- Dantu individuals. While the univariate comparisons across geno-
type groups, performed using the Log- Rank test in the Kaplan–Meier survival curves, did not reach 
statistical significance (Figure 5a), the multivariate Cox regression analysis with adjustments for other 
malaria- protective variants, anti- schizont antibody concentration, and location of residence showed 
that time to treatment was significantly longer among Dantu- carrying than non- Dantu individuals, the 
overall hazard ratio being 0.39 (CI 0.17–0.87; p=0.022) (Figure 5b). A dose- dependent effect of the 
Dantu genotype was also seen as none of the three Dantu homozygotes required treatment and the 
time to treatment was significantly longer in Dantu heterozygous than in non- Dantu individuals (HR = 
0.41, p=0.042) (Figure 5b).
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Figure 3. The impact of each gene variant on the requirement for malaria treatment.  
The proportion of individuals in each genotype category that required treatment over the course of the controlled 
human malaria infection (CHMI) study is shown on the y- axis. The number of treated individuals out of the total 
number in each genotype group is given in parenthesis above the bar graphs, while the p values from the Fisher’s 
exact tests comparing the differences in proportions of individuals that required treatment across genotype groups 
are also given above the bar graphs.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Related to Figure 2.

Figure supplement 1. No differences in anti- schizont antibody levels were found across Dantu genotype groups.

Figure supplement 1—source data 1. Related to Figure 3—figure supplement 1.

https://doi.org/10.7554/eLife.83874
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No significant impacts were seen with regard to any of the outcomes 
under study for any of the remaining RBC polymorphisms
While our primary analysis focused on the Dantu genotype, individuals in malaria- endemic regions 
often carry more than one malaria protection- associated genotype (Ndila et al., 2018). We there-
fore typed individuals for α-thalassaemia, blood group O, G6PD deficiency and ATP2B4 alleles, and 
carried out the same set of analysis as above for each genotype. Each of these genotypic groups also 
included, by random chance, individuals of different genotypes for the other variants of interest. As 
the genotyping was conducted at the end of the study, and the study included only a relatively small 
number of individuals overall, it was not possible to limit each group to those who were reference 
homozygotes for all the other variants of interest. Instead, we used multivariate analyses to check that 
any differences seen on univariate analysis were not explained by the presence of other variants or 
confounders. No significant differences were seen in any of the study outcomes between the different 

Table 2. The numbers and frequencies of individuals who received treatment before day 21 by 
genotypic category.
 
We compared the proportion of individuals that received treatment both across all genotype 
groups and in pairwise comparisons between pairs of genotype groups using the Fisher’s exact 
test. In pairwise analyses, we compared, separately, the proportion of treated individuals in the 
heterozygous- and homozygous- derived genotypes to the homozygous reference genotype. n is 
the number of participants that were treated; N is the total number within the genotypic category; 
αα/αα, no α-thalassaemia; -α/αα, heterozygous α-thalassaemia; -α/-α, homozygous α-thalassaemia. 
* For G6PD, male and female were combined as C/CC = normal (wild type hemizygous males and 
homozygous females), CT = carrier females, and T/TT = G6PD- deficient hemizygous males and 
homozygous females.

Variant Genotype n/N %
Overall p 
value

Homozygous 
reference vs. 
heterozygous

Homozygous 
reference vs. 
homozygous 
derived

Dantu rs186873296 Non- Dantu (AA) 49/111 44.1 0.10 0.13 0.26

Heterozygous (AG) 7/27 25.9

Dantu homozygous 
(GG) 0/3 0.0

G6PD +202 
rs1050828*

Homozygous 
reference (C/CC) 46/110 41.8 0.28 1.00 0.16

Heterozygous (CT) 7/17 41.2

Homozygous derived 
(T/TT) 3/15 20.0

ABO rs8176719 Non- O 28/64 43.8 0.39 - 0.39

O 27/75 36.0

α-thalassaemia
Homozygous 
reference (αα/αα) 19/48 39.6 0.79 0.85 0.79

Heterozygous (−α/αα) 30/70 42.9

Homozygous derived 
(−α/−α) 7/21 33.3

ATP2B4 rs4951074
Homozygous 
reference (GG) 26/62 41.9 0.61 1.00 0.45

Heterozygous (AG) 23/57 40.4

Homozygous derived 
(AA) 7/23 30.4

The online version of this article includes the following source data for table 2:

Source data 1. Related to Table 2.

https://doi.org/10.7554/eLife.83874


 Research article      Genetics and Genomics | Microbiology and Infectious Disease

Kariuki et al. eLife 2023;12:e83874. DOI: https://doi.org/10.7554/eLife.83874  10 of 17

genotype groups (Figures 2, 3 and 5, Tables 1–3). As noted above, the impact of Dantu on malaria 
treatment was independent of the presence or absence of these other genetic variants in multivariate 
analysis.

Discussion
Through the analysis of data from a CHMI study with PfSPZ Challenge injection conducted in Kenyan 
adults, we have shown that the Dantu blood group is associated with prevention of parasite growth 
in vivo. While more than 20% of Dantu- negative volunteers developed bloodstream malaria infections 
that reached a pre- defined threshold of 500 parasites/μl following controlled PfSPZ administration, 
this threshold was not reached by any of the 30 Dantu- positive volunteers. This is the first time that 
Dantu has been shown to protect against early- stage malaria infections. Our study suggests that Dantu 
protects against severe and complicated malaria (Ndila et al., 2018; Band et al., 2015) by preventing 
the disease from becoming established in its earliest phase. This is consistent with recent in vitro 
observations that have demonstrated a link between Dantu genotype and susceptibility to red blood 
cell invasion by P. falciparum merozoites, which we previously predicted would lead to reduced para-
site growth in vivo (Kariuki et al., 2020). That mechanistic study revealed that the Dantu genotype 
protects red blood cells from invasion by increasing their surface tension, which reduces the ability of 
merozoites to deform their surface and hence productively invade. Critically, this tension difference 
was greater in Dantu homozygotes than heterozygotes, as was the reduction in invasion efficiency, 
supporting a dose- dependent protective effect. This dose- dependency was similarly reflected in our 
current in vivo study, as while 44.1% of the Dantu- negative volunteers developed symptoms that 
precipitated malaria treatment, this occurred in only 25.9% of Dantu heterozygous and in none of 
the three (0%) Dantu homozygous volunteers. Similarly, the maximum parasitaemia observed was 
considerably higher in the non- Dantu than in the Dantu heterozygous and homozygous participants.

In contrast to CHMI studies in malaria- naïve populations, where most participants typically develop 
clinical malaria (Church et al., 1997), less than one- fifth of the participants in this study reached a 
threshold of >500 parasites/μl. This is probably because most of the participants in our study were resi-
dents of malaria- endemic communities and will therefore have been partially immune to the disease. 
Indeed, in previous analyses of data from the same study we have shown that infection outcome 

Table 3. The association between each gene variant and the requirement for treatment after 
challenge.
 
The association between each variant genotype and the treated or untreated categorical outcome 
was analysed by multivariate logistic regression using additive models for each variant, where 
each variant genotype was coded as zero, one, or two copies of the homozygous- derived allele. 
Pairwise analysis compared the treatment outcomes for the heterozygous- and homozygous- derived 
genotypes to the homozygous reference genotype. Adjustments were made for other gene variants, 
anti- schizont antibody levels, and location of residence.

Overall comparison across 
genotype groups

Homozygous reference vs. 
heterozygous

Homozygous reference vs. 
homozygous derived

Variant
Odds 
ratios 95% CI p- value

Odds 
ratios 95% CI p value

Odds 
ratios 95% CI p value

Dantu 
rs186873296 0.17 0.04–0.55 0.007 0.20 0.04–0.83 0.039 0 NA – Inf 0.990

G6PD +202 
rs1050828 0.60 0.28–1.19 0.157 1.71 0.41–6.59 0.442 0.17 0.02–0.97 0.074

ABO rs8176719 0.40 0.15–1.03 0.064 0.54 0.18–1.56 0.259 - - -

α-thalassaemia 0.91 0.46–1.73 0.766 0.97 0.31–3.04 0.957 0.87 0.18–3.22 0.758

ATP2B4 
rs4951074 0.84 0.43–1.63 0.619 0.53 0.17–1.58 0.266 0.57 0.10–2.58 0.491

The online version of this article includes the following source data for table 3:

Source data 1. Related to Table 3.

https://doi.org/10.7554/eLife.83874
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was attributable to the degree of prior exposure as estimated by the titre of anti- schizont antibodies 
(Kapulu et  al., 2022), as well as other measures of exposure including the antibody- dependent 
phagocytosis of both ring- infected and uninfected erythrocytes from parasite cultures (Musasia et al., 
2022) and the breadth of antibodies to P. falciparum Variant Surface Antigens (Kimingi et al., 2022). 
As such, Dantu genotype was therefore clearly not the only factor at play in determining the clinical 
outcome in this study. However, our multivariate analysis adjusted for these factors (Kapulu et al., 
2022) as well as other malaria- protective genetic variants, and the significant association in that anal-
ysis underscores the strong protective effect conferred by Dantu. There were also no differences 
observed in anti- schizont antibody levels across Dantu genotype groups, suggesting that differences 
in pre- existing anti- malaria immunity between Dantu and non- Dantu cannot explain the differences 
seen in this study.

The protective impact of Dantu against in vivo parasite growth was in stark contrast to that of 
the other genetic factors under study. Although consistent evidence has been found for protective 
effects against severe malaria by G6PD deficiency, blood group O, the rs4951074 allele in ATP2B4 
and α+- thalassaemia in numerous previous studies (Malaria Genomic Epidemiology Network, 2014; 
Taylor et al., 2012), none of these polymorphisms had any significant impacts on any of the outcomes 
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Figure 4. Peak parasitaemias were lower in Dantu variant carriers.  
Maximum parasitaemia values for individuals across Dantu genotype groups, with dashed line indicating the 
treatment threshold of 500 parasites/μl. The table below the figure shows the numbers and frequencies of 
individuals in each genotype category that were PCR- positive over the course of the controlled human malaria 
infection (CHMI) study. n = the number of participants that were PCR- positive; N = the total number within the 
genotype category. Statistical comparisons of proportions of PCR- positive individuals across genotype groups 
and pairwise comparisons between genotype groups were performed using the Fisher’s exact test. Statistical 
comparisons of maximum and median parasitaemia between genotype groups were performed using the Kruskal–
Wallis test, and post- hoc Dunn’s test for pairwise differences between the genotype groups.

The online version of this article includes the following source data for figure 4:

Source data 1. Related to Figure 4.

Source data 2. Related to Figure 4 table.

https://doi.org/10.7554/eLife.83874
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under investigation in this study. This is probably because, unlike Dantu, none of these conditions 
have a clearly established impact on merozoite red cell invasion, but instead influence the progress of 
malaria once the disease has become established. For example, recent studies have shown that α+- 
thalassaemia has no effect on either red blood cell invasion (Williams et al., 2002) or the development 
of uncomplicated malaria (Taylor et al., 2012; Wambua et al., 2006), but protects instead against 
the development of severe and complicated disease through mechanisms that include the reduced 
expression of red cell surface antigens that result in cytoadhesion (Krause et al., 2012; Opi et al., 
2014). Similarly, it had no apparent impact on infectivity in a previous, smaller, CHMI study using 
PfSPZ Challenge, conducted in Tanzania (Shekalaghe et al., 2014). Because clinical guidelines mean 
that controlled human malaria challenge studies only ever reach relatively low- density parasitaemias, 
they may not adequately capture the impacts of genetic factors that influence the later, more severe 
stages of malaria disease. However, this study shows that they can be helpful in pointing towards the 
pathways leading to such outcomes for further study by other methods.

In conclusion, this study reveals the power of CHMI studies to deconvolute the malaria- protective 
effects of naturally occurring human genetic variants, establishes for the first time that the Dantu 
blood group provides strong protection against in vivo parasite growth, and emphasises the potential 
of Dantu- phenocopying interventions to limit P. falciparum growth in vivo.
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Figure 5. Time to treatment was longer in Dantu variant carriers.  
The impact of each gene variant on time to treatment was analysed by (a) Kaplan–Meier survival curves, with 
univariate comparisons across genotype groups performed using the Log- Rank test and (b) multivariate Cox 
regression models, with each variant genotype coded as zero, one, or two copies of the homozygous derived 
allele in an additive model, adjusting for the other four malaria- protective variants, anti- schizont antibody 
concentration, and location of residence. Pairwise analysis compared the time to treatment in the heterozygous- 
and homozygous- derived genotypes to the homozygous reference genotype.

The online version of this article includes the following source data for figure 5:

Source data 1. Related to Figure 5a.

Source data 2. Related to Figure 5b.

Source data 3. Related to Figure 5b table.

https://doi.org/10.7554/eLife.83874
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