452 research outputs found

    T cell receptor alpha-chain gene rearrangements in B-precursor leukemia are in contrast to the findings in T cell acute lymphoblastic leukemia. Comparative study of T cell receptor gene rearrangement in childhood leukemia.

    Get PDF
    We have analyzed T cell receptor alpha-chain gene configuration using three genomic joining (J) region probes in 64 children with acute lymphoblastic leukemia (ALL). 11 out of 18 T-ALLs were T3 positive; alpha-chain gene rearrangements were demonstrated in only two of 18, indicating that the majority of T-ALLs would have rearrangements involving J alpha segments located upstream of these probes. In contrast, 15 out of 46 B-precursor ALLs showed rearrangements of the alpha-chain gene and J alpha segments located approximately 20-30 kb upstream of the constant region were involved in 13 of these patients. Nine of 15 B-precursor ALLs with rearranged alpha-chain genes had rearrangements of both gamma- and beta-chain genes, whereas the remaining six had no rearrangements of gamma- and beta-chain genes. These findings indicated that alpha-chain gene rearrangement is not specific for T lineage cells and gamma- and/or beta-chain gene rearrangement does not appear essential for alpha-chain gene rearrangement, at least in B-precursor leukemic cells

    Adhesive mechanisms governing interferon-producing cell recruitment into lymph nodes

    Get PDF
    Natural interferon-producing cells (IPCs) are found in peripheral lymph nodes (PLNs), where they support NK cell, T cell, and B cell responses to pathogens. However, their route of entry and the adhesive mechanisms used to gain access to PLNs remain poorly defined. We report that IPCs can enter PLNs via a hematogenous route, which involves a multistep adhesive process, and that transmigration is enhanced by inflammation. Results indicate that L-selectin on IPCs is required for efficient attachment and rolling on high endothelial venules in vivo in both nonstimulated and inflamed PLNs. IPCs, however, also possess functional ligands for E-selectin that contribute to this process only in the latter case. In conjunction with selectin-mediated adhesion, both β1- and β2-integrins participate in IPC attachment to the inflamed vessel wall, whereas chemotaxis relies in part on the chemokine receptor CCR5. Identification of the adhesive machinery required for IPC trafficking into PLNs may provide opportunities to regulate immune responses reliant on the activity of these cells

    TNF and ROS Crosstalk in Inflammation.

    Get PDF
    peer reviewedTumor necrosis factor (TNF) is tremendously important for mammalian immunity and cellular homeostasis. The role of TNF as a master regulator in balancing cell survival, apoptosis and necroptosis has been extensively studied in various cell types and tissues. Although these findings have revealed much about the direct impact of TNF on the regulation of NF-ÎşB and JNK, there is now rising interest in understanding the emerging function of TNF as a regulator of the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). In this review we summarize work aimed at defining the role of TNF in the control of ROS/RNS signaling that influences innate immune cells under both physiological and inflammatory conditions

    The ER UDPase ENTPD5 Promotes Protein N-Glycosylation, the Warburg Effect, and Proliferation in the PTEN Pathway

    Get PDF
    SummaryPI3K and PTEN lipid phosphatase control the level of cellular phosphatidylinositol (3,4,5)-trisphosphate, an activator of AKT kinases that promotes cell growth and survival. Mutations activating AKT are commonly observed in human cancers. We report here that ENTPD5, an endoplasmic reticulum (ER) enzyme, is upregulated in cell lines and primary human tumor samples with active AKT. ENTPD5 hydrolyzes UDP to UMP to promote protein N-glycosylation and folding in ER. Knockdown of ENTPD5 in PTEN null cells causes ER stress and loss of growth factor receptors. ENTPD5, together with cytidine monophosphate kinase-1 and adenylate kinase-1, constitute an ATP hydrolysis cycle that converts ATP to AMP, resulting in a compensatory increase in aerobic glycolysis known as the Warburg effect. The growth of PTEN null cells is inhibited both in vitro and in mouse xenograft tumor models. ENTPD5 is therefore an integral part of the PI3K/PTEN regulatory loop and a potential target for anticancer therapy

    Data on IL-10R neutralization-induced chronic colitis in Lipocalin 2 deficient mice on BALB/c background

    Get PDF
    The data herein is related to the research article entitled “Microbiota-inducible Innate Immune, Siderophore Binding Protein Lipocalin 2 is Critical for Intestinal Homeostasis” (Singh et al., 2016) [1] where we have demonstrated that C57BL/6 Lipocalin 2 deficient mice (Lcn2KO) developed chronic colitis upon anti-interleukin-10 receptor (αIL-10R) monoclonal antibody administration. In the present article, we evaluated the susceptibility of BALB/c Lcn2KO mice and their WT littermates to the αIL-10R neutralization-induced chronic colitis. Our data showed that αIL-10R mAb-treated BALB/c Lcn2KO mice exhibited severe chronic colitis (i.e., splenomegaly, colomegaly, colonic pathology, and incidence of rectal prolapse) when compared to WT mice
    • …
    corecore