
Review
TNF and ROS Crosstalk in
Inflammation
Heiko Blaser,1 Catherine Dostert,2 Tak W. Mak,1,3,4 and
Dirk Brenner2,5,*

Tumor necrosis factor (TNF) is tremendously important for mammalian immunity
and cellular homeostasis. The role of TNF as a master regulator in balancing cell
survival, apoptosis and necroptosis has been extensively studied in various cell
types and tissues. Although these findings have revealed much about the direct
impact of TNF on the regulation of NF-kB and JNK, there is now rising interest in
understanding the emerging function of TNF as a regulator of the generation of
reactive oxygen species (ROS) and reactive nitrogen species (RNS). In this
review we summarize work aimed at defining the role of TNF in the control
of ROS/RNS signaling that influences innate immune cells under both physio-
logical and inflammatory conditions.

TNF and ROS Are Interconnected
Tumor necrosis factor (TNF) (see Glossary) plays crucial roles in both normal and malignant
cells, and thus is an intensely studied cytokine. After its discovery in the 1970s it became clear
that TNF is a central player in many processes including cell survival, apoptosis, and necroptosis
as well as intercellular communication. Dysregulation of these processes is a hallmark of
inflammatory diseases and cancers. In these contexts, TNF regulates a complex signaling
network that can trigger either cell survival or cell death [1] (Box 1).

More than a decade ago TNF-dependent but caspase-independent necrotic cell death (nec-
roptosis) was shown to involve reactive oxygen species (ROS) that could be derived from
either mitochondrial or non-mitochondrial sources [2,3]. More recently, RIPK1/3-mediated
phosphorylation of MLKL during TNF-induced necroptosis was demonstrated to generate ROS
and activate JNK [4]. Accordingly, TNF-induced mitochondrial ROS production was abrogated
in RIPK1/3- or MLKL-deficient cells, which failed to undergo necroptosis [4–7]. This link between
TNF and ROS adds another layer of complexity to the TNF signaling network because ROS act
on many proteins needed to regulate cellular homeostasis, including those mediating cell
proliferation, survival, death, differentiation, DNA repair, and metabolism. This review examines
the molecular connections between ROS and TNF signaling under physiological and patho-
physiological conditions.

ROS and TNF Signaling
TNF signaling is multi-faceted – TNF may be soluble (sTNF) or membrane-bound (mTNF), and
two TNF receptors, TNFR1 and TNFR2, exist. TNFR1 is ubiquitously expressed on almost all cell
types and can be activated by both sTNF and mTNF, whereas TNFR2 is restricted to immune
and endothelial cells and is dependent on the presence of mTNF [8]. The binding of sTNF to
TNFR1 can lead to activation of nuclear factor kB (NF-kB), the key transcription factor driving
cell survival signaling, as well as to cell death. By contrast, TNFR2 has been mainly associated
with NF-kB and implicated in tissue regeneration and immune modulation [9,10] (Box 2). It is
now acknowledged that ROS are important regulators of TNF–TNFR signaling leading to cell
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survival or death (Table 1) [11]. Based on the available data, this review focuses mainly on
TNF–ROS signaling crosstalk mediated by TNFR1.

ROS and NF-kB Signaling
Intracellular ROS are generated either from extracellular sources of oxygen species that arise as
a result of the action of NADPH oxidase (NOX) or from the mitochondrial respiratory chain.
Although it is clear that ROS are crucial for NF-kB signaling downstream of TNF [12], debate is
ongoing over whether mitochondrial ROS are involved in NF-kB activation or inactivation. The
generally accepted hypothesis holds that TNF-induced ROS suppress NF-kB activation [13],
decreasing NF-kB-mediated survival signaling and accounting for the cell death associated with
high ROS levels. Conversely, significant data exist indicating that mitochondrial ROS can
promote, rather than inhibit, TNF-mediated NF-kB activation [14]. For example, specific inhibition
of mitochondrial ROS in human monocytes and T cells using the mitochondria-specific antioxidant
MitoVit E has confirmed that mitochondrial ROS are important for NF-kB activation [15]. Under
normal physiological conditions, TNF simultaneously induces the pro-apoptotic cascade triggered
by procaspase 8 cleavage and the anti-apoptotic pathway mediated by NF-kB activation.
Interestingly, in cells where mitochondrial ROS generation is blocked by MitoVit E, TNF-induced
procaspase 8 activation proceeds normally, but activation of caspase 3, cleavage of the pro-
apoptotic Bcl-2 family member BID, and release of cytochrome c from mitochondria are signifi-
cantly increased. Thus, inhibition of TNF-mediated mitochondrial ROS production apparently
diminishes NF-kB activation, suggesting that mitochondrial ROS can positively control NF-kB
signaling [15]. It is not yet understood how mitochondrial ROS activate NF-kB, but it is assumed
that ROS inactivate the phosphatases that regulate the activity of the kinases controlling NF-kB
signaling. Such ROS-mediated phosphatase inhibition would lead to enhanced phosphorylation of
IkB, triggering its degradation and permitting NF-kB activation [14,16].

ROS and JNK Signaling
TNF-induced ROS production is also important for crosstalk between the NF-kB-induced cell
survival pathway and the JNK-induced cell death pathway [17–19]. Current understanding of the
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Box 1. TNFR Complexes

TNF binding to TNFR1 or TNFR2 causes different molecular complexes to form that transduce signals with differing
biological effects. TNF–TNFR1 engagement induces a conformational change in the receptor cytoplasmic domain that
recruits the adaptor protein TRADD. Also recruited to TNF-TNFR1 is RIPK1 (TRADD-dependent and -independent
recruitment are possible) [116–118]. TNFR1, TRADD, and RIPK1 initiate the assembly of membrane-bound TNFR
complex I: binding of TRAF2 (or TRAF5) to the TRADD N-terminal TRAF-binding domain, followed by the binding of
TRAF2 to cellular inhibitor of apoptosis protein-1 (cIAP1) and -2. At this point RIPK1 acts as a molecular switch between
cell survival and cell death, depending on its state of ubiquitination. cIAP1 and cIAP2 attach K63-linked polyubiquitin
chains to RIPK1, which facilitate to recruit the linear ubiquitin chain assembly complex (LUBAC) to complex I [1,116,119].
LUBAC stabilizes complex I by attaching linear M1-linked linear polyubiquitin chains to RIPK1 and prevents inflammation
[120]. Polyubiquitination of RIPK1 in complex I is essential for the recruitment of TAB2/3 and TAK1, as well as for NF-kB
activation that prevents cell death [1,121]. However, when RIPK1 in complex I is deubiquitinated by cylindromatosis
(CYLD), RIPK1 dissociates from the membrane-bound TNFR1 signaling core. Deubiquitinated RIPK1 then assembles in
the cytosol with TRADD, FADD, procaspase 8, and cFLIPL to form complex IIa. An alternative cytoplasmic complex IIb is
assembled under conditions in which cIAP1/cIAP2 are depleted and cannot ubiquitinate RIPK1 in membrane-bound
complex I. Once again, non-ubiquitinated RIPK1 dissociates from complex I, but assembles with FADD (not TRADD),
procaspase 8, c-FLIPL, and RIPK3 to form complex IIb [1].

In both complexes IIa and IIb, procaspase 8 forms homodimers and heterodimers with c-FLIPL. RIPK1/RIPK3 can be
inactivated by cleavage either by fully activated caspase 8 (leading to apoptosis) or the caspase 8–FLIPL heterodimer
(leading to survival). Full inactivation of RIPK1 and RIPK3 is crucial to prevent necroptosis [1].

If RIPK1/RIPK3 are not inactivated, for example under conditions where caspases are inhibited and deubiquitinated
RIPK1 is present, necroptosis will be initiated. A crucial downstream mediator of necroptosis is the pseudokinase mixed-
lineage kinase domain-like (MLKL), which is phosphorylated by RIPK3 (see [1,121] for a comprehensive overview of
TNFR1 signaling in ubiquitination and cell death).
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Glossary
Inflammation: an innate immune
response that occurs at a site of
tissue damage caused by either
physical injury or a chemical or
biological agent. Classic signs include
heat, redness, pain, swelling, and
loss of tissue function. Chronic
inflammation can be pathological.
Innate immune system: the
collection of leukocytes and their
products that provides immediate
defense against pathogens. Relies on
recognition of common molecular
motifs by pattern recognition
receptors.
Mitochondrion: a multifunctional
organelle that is found in most
eukaryotic cells and generates ATP.
Considered to be the ‘energy
powerhouse’ of the cell.
Mitochondrial outer-membrane
permeabilization (MOMP): process
by which specific proteins in a cell
disrupt the outer mitochondrial
membrane and trigger the release of
mitochondrial proteins that promote
mitochondria-dependent cell death.
Mitophagy: autophagic removal of
mitochondria under conditions of
nutrient starvation or mitochondrial
stress.
Nuclear factor kB (NF-kB):
transcription factor responsible for
the expression of key cell survival
genes. Following activation of the IKK
complex, the inhibitor IkB that holds
NF-kB in an inactive state in the
cytoplasm is degraded, freeing NF-
kB to translocate to the nucleus and
drive gene expression.
Reactive oxygen/nitrogen species
(ROS/RNS): Chemically reactive
oxygen- or nitrogen-derived
molecules produced by various
cellular mechanisms, including
mitochondrial respiration. At low
concentrations, ROS/RNS play key
roles as messengers during cell
signaling and proliferation. However,
stress-related increases in ROS/RNS
may result in significant damage to
cellular components such as DNA
and RNA, and trigger cell death.
Tumor necrosis factor (TNF): a
cytokine participating in a broad
range of cellular processes and
responses including survival,
differentiation, inflammation, and
various forms of cell death.

relationship between JNK and ROS is that there is a positive feedback loop between ROS-
dependent JNK activation and the generation of JNK/SAB-dependent mitochondrial ROS
[20,21]. The outer mitochondrial membrane protein SAB (SH3 homology associated BTK
binding protein) binds to and recruits activated JNK, increasing mitochondrial ROS generation
and sustaining JNK activation in a self-amplifying loop. Notably, TNF-stimulated ROS production
occurs in wild-type mouse embryonic fibroblasts (MEFs) but not in Jnk�/� MEFs [22]. This
observation indicates that JNK contributes to TNF-induced ROS generation, which in turn
stimulates persistent JNK activation. The interplay among TNF, JNK, and ROS in promoting cell
death is illustrated in Figure 1.

TNF-Induced Antioxidant Signaling
TNF-induced NF-kB signaling leads to the transcription of not only anti-apoptotic genes but also
genes involved in decreasing intracellular ROS levels. This production of antioxidants in
response to NF-kB activation plays an important role in balancing ROS effects. Two major
players in this context are manganese superoxide dismutase-2 (MnSOD2) and catalase, both of
which counteract TNF-induced apoptosis by neutralizing mitochondrial ROS [23,24]. Two other
key antioxidants are heme oxygenase-1 (HO-1) and H-ferritin (also known as FHC/FTH). HO-1
catalyzes heme degradation, resulting in the formation of CO and biliverdin, which is subse-
quently reduced to bilirubin, a potent antioxidant [14]. H-ferritin controls ROS generation, which
would otherwise drive persistent JNK signaling, through its ferroxidase activity, which seques-
ters iron atoms that could be used to catalyze ROS generation [13,25,26].

Another important antioxidant in the TNF context is the master transcription factor NRF2. In
principle, the NRF2 pathway could support TNF-induced NF-kB-mediated survival signaling by
preventing sustained activation of JNK through massive upregulation of antioxidants [27,28].
However, the interaction of NF-kB (p65) with KEAP1 leads to inhibition of the NRF2–ARE
pathway [29]. In addition, NRF2 activity is repressed by MAFK, a novel coactivator of NF-kB
signaling [30]. In chronically inflamed tissues, the NRF2 pathway attempts to reinstate a redox
balance that promotes cellular repair and limits TNF-induced ROS and its associated inflam-
mation [31]. Thus, ROS signaling leading to the activation of NRF2-, HO-1-, and/or H-ferritin-
mediated pathways can protect against ROS-mediated inflammation induced by TNF.

ROS and TNF-Induced Apoptosis
The decision of whether a particular cell lives or dies is crucial for the survival of an entire
organism. TNF and ROS play important roles in this physiologically vital decision-making, which
can be modified at various levels. A TNF-initiated death signal can be influenced by mitochondrial
ROS, which contribute to apoptosis by inducing mitochondrial outer-membrane

Box 2. TNFR2 as an Anti-Inflammatory Mediator

Whereas TNF–TNFR1 signaling promotes inflammatory disease, TNF–TNFR2 signaling appears to have protective anti-
inflammatory effects [9]. Rat cardiac myocytes can utilize TNF–TNFR2 signaling to counteract TNF–TNFR1-induced ROS
production and prevent cell death [122]. TNF can have both neurodegenerative and neuroregenerative effects. Although
signaling through TNFR1 is mostly associated with damaging effects resulting from inflammation, oxidative stress, and
apoptosis, TNFR2 activity has neuroprotective effects by stimulating NF-kB and AKT-dependent signaling pathways in
neurons [10]. TNFR2 signaling results in the release of anti-inflammatory and neurotrophic factors from microglia and
astrocytes. In mice, mTNF-TNFR2 signaling activates myeloid-derived suppressor cells (MDSC), leading to the upre-
gulation of NOS2 and arginase-1 (ARG1), the activation of p38 and NF-kB, and the secretion of ROS/NO/RNS, TGF-b,
and IL-10. These MDSCs show enhanced suppressive activities that ultimately inhibit T cell proliferation resulting in
increased tumor progression [123]. Another possible mediator of TNFR2 signaling effects are regulatory T cells (Treg). It
has been described that TNFR2 is expressed at high levels in a population of Treg cells with high suppressive capacity
(CD4+ CD25+ FOXP3+) [124]. Activation of TNFR2 is important for the proliferation and function of these Tregs, indicating
an important role of TNFR2 in the regulation and suppression of the immune response. Importantly, inhibition of Treg
function leads to an increased risk of autoimmune disease. These results and others further support an immunosup-
pressive function for TNFR2 that contrasts with the proinflammatory function of TNFR1 [125].
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permeabilization (MOMP) and JNK activation [21]. Mitochondrial contributions to apoptosis
are largely controlled by proteins of the Bcl2 family. For example, ROS induce expression of the
pro-apoptotic Bcl2 proteins Puma and Bim [32,33]. However, the pro-apoptotic activities of
these molecules can be neutralized by the anti-apoptotic proteins Bcl-XL and Bcl2, whose
expression is controlled by NF-kB-induced survival signaling [34]. When the pro-apoptotic
signals in a particular cell outweigh the anti-apoptotic signals, MOMP is induced. MOMP results

Table 1. TNF Signaling Pathways and their Outcomes

Receptor Liganda Induced Signaling
(Outcome)

Reactive
Species

Reactive Species-Induced Signaling

TNFR1 sTNF TRADD/RIP–MLKL–JNK
[4] (mitochondria
involvement through SAB)

ROS " Activate ASK1–JNK–TNF (pro-necroptosis)
Inhibit NF-kB (cell death) [13]
Activate NF-kB–BclXL–Bcl2 (pro-survival)
[12]
Activate Bim/Puma (pro-apoptosis)

TRADD/RIP and/or RAC/
RFK/NOX1

ROS " Activate JNK (pro-necroptosis) [58–62]

NF-kB ! increased
transcription: cFLIP, BclXL,
catalase, SOD
(pro-survival)

ROS # Opposes cell death via reduced cellular ROS

NF-kB ! increased
transcription of TNF, NOX2,
IL-6, IL-2, IL-8, CXCL12
(proinflammation)

ROS " Activate JNK (pro-necroptosis)

Caspase 8–ROMO–BclXL–
MOPS (mitochondria
involvement) [39–41]
Caspase 8–caspase 3 (pro-
apoptosis)

ROS " Activate ASK1–JNK (cell death)

NF-kB–NOS2 [14]
NF-kB–KEAP1–NRF2–
HO-1–H-ferritin (pro-
survival)

NO� " Activate NRF2–HO-1–H-ferritin (pro-survival)
NO�

–ROS interaction ! RNS (cell death)

mTNF RIP1-independent,
CAPKb-dependent
(mitochondria involvement)
[126]

ROS " (pro-necroptosis)

TNFR2 mTNF RIP1-independent, CAPK-
dependent, TNFR1-
independent (mitochondria
involvement) [126]

TNF production

ROS " TNFR2 activation can support TNFR1-
triggered oxidative burst (pro-necroptosis)

cPLA2, ERK, MSK1, PKCz,
CaMKII, PLB (pro-survival)
[122]

ROS # Inhibit cell death owing to reduced cellular
ROS

NF-kB, Bcl2, SOD2 (pro-
survival) [10,125]

AKT caspase 9 inactivation
(pro-survival) [10]

ROS # Inhibit cell death owing to reduced cellular
ROS

TRAF1/2, p38, NF-kB,
NOS2, ARG1 [123]

Secreted NO� "
ROS "

Activate secretion of NO� and ROS to inhibit T
cell proliferation (immunosuppression)

asTNF, soluble/secreted TNF; mTNF, membrane-bound TNF.
bCAPK, ceramide-activated protein kinase.
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in the cytosolic release of mitochondria-derived pro-apoptotic factors such as cytochrome c and
Smac/Diablo [35]. As a result, caspase 9 and caspase 3 are activated and execute classical
apoptosis. More detailed descriptions of ROS in apoptosis and the mitochondrial death cascade
appear elsewhere [36,37].

The precise molecular mechanism by which TNF stimulation leads to increased mitochondrial
ROS within a cell is not clear. In response to TNF, complex II containing procaspase 8 can be
formed [38]. Activated caspase 8 can bind to ROS modulator-1 (ROMO1), which is located in
the mitochondrial outer membrane. ROMO1 then sequesters Bcl-XL, which reduces mito-
chondrial membrane potential. As a result, ROS are produced that trigger JNK activation and
apoptosis [39–41]. A central element in this pathway is apoptosis signal-regulating kinase-1
(ASK1). ASK1 is a mitogen-activated protein kinase kinase kinase (MAPKKK) that activates
the JNK and p38 pathways and is required for TNF-induced apoptosis [42]. ASK1 is inactive
as long as it is bound by reduced thioredoxin. When thioredoxin is oxidized by ROS, ASK1 is
released and activates downstream targets such as JNK and p38 in a TRAF2/TRAF6-
dependent manner [43–45]. Alternatively, ASK1 can be inactivated by protein phosphatase
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Figure 1. TNF-Induced ROS Signaling through NOX1/2 Complexes. Engagement of TNFR1 by TNF activates the
NOX1 or NOX2 complex, depending on cell type (NOX1 complex subunits are labeled in red, NOX2 complex subunits are
labeled in black, p22phox and p40phox are shared). The first step of NOX1/2 activation is the interaction of the cytosolic
domain of TNFR1 with RFK and p22phox. The activated NOX complex converts extracellular O2 into O2

�, which
extracellular SOD3 then converts into extracellular H2O2. This H2O2 passes freely through the plasma membrane and
acts as a major source of intracellular ROS. Second, TNF-induced formation of complex II leads to interactions between
activated caspase 8, ROMO1, and Bcl-XL in the outer mitochondrial membrane. These interactions reduce mitochondrial
membrane potential, triggering MOMP and the production of mitochondrial ROS. Also illustrated are several feedback loops
that regulate TNF-induced ROS signaling. (1) TNF-mediated NF-kB activation upregulates catalase and SOD expression,
leading to an antioxidant response, but also induces TNF and NOX2 expression that feed back into ROS generation. (2)
ROS activate NF-kB directly or indirectly by inhibiting IKK phosphatases. (3) ROS activate the JNK pathway by inhibiting
MAPK phosphatases, while JNK stimulates mitochondrial ROS production through SAB. (4) Although ROS block the
interaction of thioredoxin with ASK1, which frees ASK1 to activate JNK, ROS can also activate PP5, which negatively
regulates ASK1. (5) PKA, PKC, and ERK block NOX1-induced ROS production by inhibiting NOXA1 function. (6) SRC-
mediated activation of TKS4 positively regulates NOX-induced ROS production. (7) AKT and PKCz promote NOX complex
activation. Please note that the negative regulation of ROS–JNK signaling by the NRF2/HO-1/H-ferritin pathway is shown in
the context of RNS in Figure 2.
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5 (PP5), which is regulated by ROS [46]. This observation suggests the existence of a ROS-
dependent feedback loop that controls ASK1 activity and regulates ASK1-induced cell death
based on temporal and spatial variations in ROS levels. ROS can further support apoptosis by
inactivating JNK-inactivating phosphatases [47]. This regulation leads to sustained JNK
activation, which is required for cytochrome c release and caspase 3 activation during
apoptosis.

ROS and TNF-Induced Necroptosis
ROS have a significant effect on necroptosis, particularly the mitochondrial ROS generated in
response to TNF/TNFR1 engagement [48–54]. However, experiments in which mitochondria
were depleted by mitophagy have indicated that mitochondrial ROS are not essential for
necroptosis and can be bypassed if caspases are inhibited [55]. Non-mitochondrial derived ROS
have also been implicated in TNF-induced necroptosis [50]. Thus, there are probably comple-
mentary pathways that lead to necroptosis, and non-mitochondrial ROS can drive this form of
cell death in some cell types.

A significant source of non-mitochondrial ROS participating in TNF-induced necroptosis is the
plasma membrane-associated NOX1 complex, which is expressed in non-phagocytic cells
[56,57]. When these cells respond to TNF, recruitment of the NOX1 complex to TNFR1 is
facilitated by TRADD/RIPK and/or RAC1/riboflavin kinase (RFK) [58–60]. This juxtaposition with
TNFR1 leads to NOX1 activation, and the NOX1 complex then transiently produces ROS in a
mitochondria-independent manner. These non-mitochondrial ROS contribute to persistent
RIPK1-dependent JNK activation that precipitates necroptosis [50,61,62]. The role of RAC1
in this process has been confirmed by a dominant-negative RAC1 mutant that exhibits reduced
TNF-induced NOX1 activation, O2

� generation, and necroptosis [50]. ROS from different
sources, either from the mitochondria (RIPK1/3, MLKL-dependent) or the NOX1 complex
(RIPK1-dependent), seem to be important for necroptosis [4,50]. Considering these different
findings, however, there must be cell-specific regulation of these pathways. More molecular
work is needed to clarify whether, under which conditions, and in which cells these pathways
can compensate for each other.

Once activated by TNF signaling, the NOX1 complex is controlled at several levels. The NOX1
complex contains five subunits: NOX1, NOXA1, NOXO1, p22phox, and p40phox. NOX1 and
p22phox are constitutively localized in the plasma membrane. Upon activation of p22phox/
NOX1, the cytosolic subunits NOXO1, NOXA1, and p40phox colocalize with p22phox and
NOX1 to form an inactive NOX1 complex at the membrane. A fully-active NOX1 complex is
formed when the small GTPase RAC is recruited to the complex and activated [63,64]. ROS are
produced by the activated NOX1 complex when the TKS4 protein that interacts with NOXA1 is
phosphorylated and activated by SRC kinase [65]. Conversely, ROS production by the NOX1
complex is inhibited when NOXA1 is phosphorylated by protein kinase A (PKA) or protein kinase
C (PKC). This phosphorylation allows 14-3-3 protein binding, which induces NOXA1 to disso-
ciate from the NOX1 complex and shuts down ROS generation. Similarly, phosphorylation of
NOXA1 by extracellular signal-regulated kinase (ERK) negatively regulates NOX1 complex
activity [66]. These findings illustrate the important functional link between TNF/TNFR1 signaling
and the NOX1 complex in necroptosis. The actual mechanisms by which the NOX1 complex
generates ROS are shared by the NOX2 complex which is crucial for phagocytosis in innate
immune cells.

TNF Signaling and ROS/RNS Production in the Immune System
ROS are essential components of the innate immune response against microbial pathogens
(Box 3). This crucial function of ROS first came to light in studies of phagocytosis. Details of the
mechanics of phagocytosis can be found elsewhere [67].
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NOX2 Complex in Phagocytosis
Similarly to the NOX1 complex, the NOX2 complex is composed of five subunits: NOX2 (also
known as gp91phox), p67phox (homologous to NOXA1), p47phox (homologous to NOXO1),
and the shared p22phox and p40phox subunits (Figure 1). NOX2 and p22phox are localized
at the plasma membrane and form the cytochrome b (558) complex. Upon pathogen attack,
the cytosolic p67phox, p47phox, and p40phox subunits come together and recruit a
small GTPase (RAC1 in monocytes and RAC2 in neutrophils). All these elements then
colocalize with p22phox and NOX2 at the membrane to form the complete and active
NOX2 complex [68]. To generate ROS, the NOX2 complex converts extracellular O2 into
O2

�, which is further converted into extracellular H2O2 by SOD3 (Figure 1). H2O2 can
penetrate the phagocyte membrane and can act inside the cell to promote pathogen
phagocytosis [69,70].

There is growing evidence that intracellular mitochondrial ROS also facilitate phagocytosis
[71,72]. However, the exact contributions of mitochondrial and non-mitochondrial ROS to
innate immune responses have yet to be defined [73,74]. It should be noted that, as well as
being essential for innate immune responses against pathogens, TNF–NOX2 signaling is
believed to be responsible for chronic inflammation and its associated tissue damage [14,75].

TNF and ROS Participate in a Positive Feedback Loop
On one hand, ROS generation is induced by cytokines; on the other, ROS can stimulate
proinflammatory cytokine production by activating NF-kB [14]. In phagocytic cells, H2O2 triggers
TNF expression via activation of the p38 and JNK pathways [76]. In addition, H2O2 oxidizes the
catalytic cysteines of MAPK-inactivating phosphatases, thus activating MAPKs such as p38
[47,77]. This positive feedback loop, in which TNF-induced ROS production subsequently
triggers TNF expression via p38, JNK, and NF-kB, emphasizes the importance of proper
ROS regulation in executing a successful TNF-mediated innate response.

RFK plays a particularly important role in TNF-triggered ROS generation. The membrane-bound
p22phox subunit of the NOX2 complex is coupled to RFK, and RFK can interact with TNFR1.
RFK converts riboflavin into flavin mononucleotide and flavin adenine dinucleotide, which are
essential cofactors of oxidases such as NOX2 [60]. In line with this observation, phagocytes
lacking riboflavin or RFK activity display defective TNF-dependent NOX2 signaling, resulting in
reduced ROS production and impaired innate immune responses against pathogens [78].
Although resting phagocytic cells express NOX2 complex components, these proteins are
inactive and do not assemble into the NOX2 complex until the cells are stimulated by a pathogen.
Indeed, neutrophils simply adhering to the extracellular matrix do not produce high ROS levels.
However, upon TNF stimulation, the NOX2 complex is immediately assembled and activated in
adherent neutrophils, and ROS are produced via a pathway involving VAV1, RAC2, and proline-
rich tyrosine kinase-2 (PYK2) [79]. In addition, TNF signaling leading to NOX2 activation

Box 3. The Oxidative Burst

Innate immune cells such as neutrophils and macrophages act as a first line of defense against infection by microbial
pathogens. Both of these cell types mediate effective innate immune responses by means of the ‘oxidative burst’, which
is characterized by the rapid production of large amounts of intracellular ROS and the activation of proteases that
degrade phagocytosed microbes [127,128]. ROS production during the oxidative burst is non-mitochondrial and results
from the tightly regulated activation of NOX proteins. In contrast to the NOX1 complex that generates ROS in non-
phagocytic cells, phagocytes such as granulocytes, neutrophils, monocytes, and macrophages produce ROS by the use
of an analogous NADPH oxidase complex termed NOX2 [70,129]. NOX2 complex activation is triggered when microbes
bearing common molecular patterns are recognized by specific pattern recognition receptors, or when complement
components or growth factors bind to the appropriate surface receptors [130]. Exposure of a phagocyte to proin-
flammatory cytokines such as TNF, IFN-g, and/or IL-1b induces NOX2 complex formation and thus significantly increases
the ROS levels achieved within the cell.
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increases the adherence of macrophages and neutrophils to endothelial cells, enhancing the
efficiency of phagocytosis.

RNS as Mediators of TNF Signaling
In the same way as ROS are important for TNF signaling during innate immune responses,
reactive nitrogen species (RNS) play a prominent role but in a strikingly different way.
Paradoxically, the starting point for most RNS generation is the powerful antioxidant nitric oxide
(NO�). During infection, NO� contributes directly to microbe elimination and inhibits the escape
mechanisms these organisms seek to deploy. High levels of NO� also act as a redox balancer to
protect a cell from the destructive effects of high intracellular ROS. However, NO� induces the
expression of proinflammatory genes such as TNF, at least in human macrophages [80]. If TNF
action generates significant ROS in the form of O2

�, this radical reacts with NO� to generate RNS
such as nitrite (NO2), dinitrogen trioxide (N2O3), and peroxynitrite (NO3

�) [81], all of which can
induce DNA damage and cell death [82]. Thus, NO� serves as a pivot, protecting cells from the
effects of high ROS and TNF-mediated cell death, but also generating RNS and promoting
inflammation. These findings highlight the functional importance of a proper NO/ROS/RNS
balance during TNF signaling. At the organism level, the immune system uses an array of
different redox mechanisms to generate and regulate ROS, NO�, and RNS to maintain a broad
range of immune functionalities [83]. Different pathogens elicit different RNS/ROS combinations,
and each of these is aimed at triggering elimination of phagocyte threats.

TNF–NF-kB Signaling as an RNS Inducer
TNF-induced NF-kB signaling drives the transcription of the gene encoding inducible nitric oxide
synthase (iNOS, also known as NOS2) [83] (Figure 2). In response to various stimuli, NOS2 produces
NO�/RNS, which provide the immune system with enormous flexibility when facing diverse chal-
lenges. For example, NO� can induce cell death in a BAX/BAK-dependent manner that involves
cytochrome c and caspase 9 [84]. Alternatively, RNS/ROS-induced NRF2 can trigger HO-1/H-
ferritin expression, leading to anti-inflammatory cytokine production that contributes to antioxidant
protection and counteracts cell death [85,86]. Indeed, NO�/RNS-mediated production of HO-1 and
H-ferritin suppresses TNF-induced ROS generation [83,87]. TNF-induced NO� also stimulates the
expression of other key molecules involved in the redox response, including hypoxia-inducible factor
1 (HIF-1) and AKT [88,89]. Thus, depending on their molecular species and abundance, RNS can
trigger opposite reactions that have profound effects on the redox balance of a cell. Feedback
mechanisms are also involved. Although only a short burst of NO� produced in response to TNF is
sufficient to activate the powerful NF-kB, JNK, and p38 signaling pathways [90], prolonged NO�

exposure serves as a negative feedback trigger and inhibits NF-kB signaling [91–93].

Lastly, in addition to upregulating NOS2 during inflammation, NF-kB regulates xanthine oxidase/
dehydrogenase (XOR), an enzyme that can catalyze both reduction and oxidation reactions [14].
All these observations highlight the major influence of TNF on the intricate balance between
inflammatory and non-inflammatory responses that is required for the safe and efficient elimi-
nation of pathogens.

TNF and ROS in Inflammatory Diseases
Over the past few decades numerous studies have indicated that TNF, ROS, and NF-kB are
inextricably tied together in immunity, inflammation, and cancer [94]. It has long been known that
TNF is involved in the clinical symptoms of disorders such as rheumatoid arthritis (RA),
inflammatory bowel disease, sepsis, ankylosing spondylitis, systemic lupus erythematosus
(SLE), psoriasis, multiple sclerosis (MS), respiratory diseases, vasculitis, type 1 diabetes
(T1D), and TNFR1-associated periodic syndrome (TRAPS) [95,96]. More recently, ROS have
been implicated in atherosclerosis and pancreatitis [97]. The following subsections outline the
roles of TNF and ROS in three common inflammatory disorders.
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TNF and ROS in Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a chronic inflammatory disease that affects peripheral joints but also
the skin, kidneys, heart, and lungs. Macrophages, neutrophils, dendritic cells (DCs), plasma
cells, and T and B lymphocytes infiltrate into synovial membranes and secrete proinflammatory
cytokines [98]. High levels of TNF, NOX2, and ROS accumulate in inflamed joints [99,100].
Accordingly, therapeutic inhibition of TNF signaling efficiently inhibits ROS production and
reduces joint inflammation [101].

Specific mutations of genes involved in immune or inflammatory responses or in TNF or ROS
biology are also associated with RA development. These mutations affect the genes encoding
human leukocyte antigen (HLA); protein tyrosine phosphatase non-receptor, type 22 (PTPN22);
TNF receptor-associated factor 1-complement component 5 (TRAF-C5); and p47phox (NCF1)
[100,102–104]. The roles of these mutated genes and their links to TNF and ROS during RA
development are the subject of ongoing studies.

TNF and ROS in TRAPS
TRAPS is a familial autoinflammatory syndrome characterized by recurrent prolonged episodes
of fever, rash, abdominal pain, and systemic amyloidosis. Almost all mutations in the TNFRSF1A
gene encoding the TNFR1 protein are missense mutations in the receptor extracellular domain
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which drives the transcription of NOS2. NOS2 catalyzes the generation of NO� from L-arginine with concomitant
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support the phagocytic killing of microorganisms. However, extracellular NO� also contributes to the inflammation
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established to generate ROS and NO� while simultaneously controlling the antioxidant response.

Trends in Cell Biology, April 2016, Vol. 26, No. 4 257



which is responsible for receptor pre-association and TNF binding [105]. Mutant TNFR1 cannot
reach the cell surface or interact with the wild-type TNFR1 protein. The majority of mutated
TNFR1 proteins are retained in the endoplasmic reticulum as a result of their abnormal protein
folding. Cells from TRAPS patients, or from mice with heterozygous Tnfrsf1a mutations homol-
ogous to those linked to TRAPS, show spontaneously activated JNK and p38 MAPKs [106].
Cells from TRAPS patients also exhibit increased oxygen consumption and respiratory capacity,
leading to increased mitochondrial ROS production [96]. It is believed that ROS inactivate MAPK
phosphatases, thereby enhancing MAPK activation. Treatment of TRAPS patients with TNF-
blocking agents improves their symptoms but does not fully suppress the disease. The mutated
TNFR1 subunits in these patients may act as unusual gain-of-function proteins that signal from
within the cell to enhance inflammatory responses. However, mutations in TNFR1 are not the
sole factor driving this disease because the presence of a functional wild-type TNFR1 protein is
still necessary to elicit the clinical signs of TRAPS [107].

TNF and ROS in T1D
In T1D, a proinflammatory response involving TNF, IL-1, and ROS stimulates the destruction of
insulin-secreting b cells by activated CD4+ and CD8+ T cells in the pancreatic islets [108,109].
Activated CD8+ T cells can produce TNF that is directly toxic to b cells. Activated CD4+ T cells
also secrete TNF that activates natural killer cells, macrophages, and DCs, which enhance b cell
destruction [110]. At T1D onset, the pancreas contains high numbers of IFN-g-producing Th1
cells. Although Th1 cells are deemed to be the major players in T1D, islet-specific Th17 cells can
contribute to T1D in the absence of Th1 cells [111]. Thus, TNF produced by either Th1 or Th17
cells can promote T1D onset.

At the molecular level, TNF mediates b cell destruction leading to T1D through its activation of
JNK, ROS, and p53 signaling [112]. Recent data suggest that TNF-dependent induction of
NOX-derived ROS promotes the differentiation of proinflammatory M1 macrophages that
infiltrate pancreatic islets and destroy b cells [113]. However, the available preclinical and clinical
data on the effectiveness of blocking TNF activity in T1D patients is conflicting. TNF blockade has
been shown to both accelerate and delay T1D development in animal models [114].

Concluding Remarks
TNF is a master regulator of cell survival and cell death. Because TNF affects numerous
pathways controlling immune responses and inflammation, its functions must be carefully
orchestrated. The major role of TNF is to regulate the immune system through the activation
of TNF receptors and downstream pathways involving molecules such as NF-kB, MAPKs,
caspases, and ROS/RNS. NF-kB activation protects against cell death because NF-kB governs
the transcription of a wide array of genes involved in cell survival, proliferation, and inflammation.
However, TNF-induced MAPK activation leads to cell proliferation on one hand but apoptosis on
the other. TNF signaling also induces ROS/RNS generation whose crucial role is to control TNF
signaling downstream of TNF receptors. This function of ROS has been largely ignored in the
past, perhaps because of the major challenge posed by measuring its impact on the several
hundred genes involved in signaling downstream of TNF–TNFR engagement. There are multiple
sources of ROS both inside and outside the cell, and diverse ROS species that are generated in
different places within a cell, at different timepoints, and at different concentrations. This is further
complicated by the complex ROS/RNS interplay. All these factors significantly influence the
effect of ROS and RNS on a specific pathway or protein. Nevertheless, it is now clear that ROS/
RNS are an integral part of TNF signaling because they are intimately involved in the numerous
feedback loops that are part of the extensive crosstalk of pathways downstream of TNFR
engagement (Table 1). To better understand the roles of ROS and TNF in inflammatory diseases,
it will be important to elucidate how ROS regulate TNF-induced pathways, especially NF-kB
activation (see Outstanding Questions). In terms of novel therapeutic options for patients with

Outstanding Questions
How do ROS function physiologically,
and how do they contribute to the
mechanism of inflammation?

How does ROS–TNF crosstalk contrib-
ute to life–death decisions of the cell,
and how can we modulate this interac-
tion clinically?

Why have clinical trials using antioxi-
dants failed? The intricate relationship
between oxidative stress and inflamma-
tion needs to be further characterized.

What is the role of TNFR2 signaling and
its interactions with TNFR1 and/or ROS?

How and to what extent is TNFR2
involved in RNS generation and
signaling?

Does LT/ play a role in TNF–ROS
crosstalk in inflammatory diseases?
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inflammatory disorders, a combination therapy that controls TNF and ROS may represent an
entirely new approach to tackling TNF-related immunopathic diseases [115].
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