3,501 research outputs found
Energy dependence of pion double charge exchange
The energy dependence of forward angle pion double charge exchange is calculated in the energy range of 0â250 MeV. The most striking feature is a peak around 40 MeV which is in excellent agreement with the data when distorted waves obtained from a realistic optical model are used. Two possible short-range corrections to the reaction mechanism are addressed
The Ultraluminous X-ray Sources near the Center of M82
We report the identification of a recurrent ultraluminous X-ray source (ULX),
a highly absorbed X-ray source (possibly a background AGN), and a young
supernova remnant near the center of the starburst galaxy M82. From a series of
Chandra observations taken from 1999 to 2005, we found that the transient ULX
first appeared in 1999 October. The source turned off in 2000 January, but
later reappeared and has been active since then. The X-ray luminosity of this
source varies from below the detection level (~2.5e38 erg/s) to its active
state in between ~7e39 erg/s and 1.3e40 erg/s (in the 0.5-10 keV energy band)
and shows unusual spectral changes. The X-ray spectra of some Chandra
observations are best fitted with an absorbed power-law model with photon index
ranging from 1.3 to 1.7. These spectra are similar to those of Galactic black
hole binary candidates seen in the low/hard state except that a very hard
spectrum was seen in one of the observations. By comparing with near infrared
images taken with the Hubble Space Telescope, the ULX is found to be located
within a young star cluster. Radio imaging indicates that it is associated with
a H II region. We suggest that the ULX is likely to be a > 100 solar mass
intermediate-mass black hole in the low/hard state. In addition to the
transient ULX, we also found a highly absorbed hard X-ray source which is
likely to be an AGN and an ultraluminous X-ray emitting young supernova remnant
which may be related to a 100-year old gamma-ray burst event, within 2 arcsec
of the transient ULX.Comment: 9 pages, 8 figures. Accepted for publication in Ap
General Relativistic Radiant Shock Waves in the Post-Quasistatic Approximation
An evolution of radiant shock wave front is considered in the framework of a
recently presented method to study self-gravitating relativistic spheres, whose
rationale becomes intelligible and finds full justification within the context
of a suitable definition of the post-quasistatic approximation. The spherical
matter configuration is divided into two regions by the shock and each side of
the interface having a different equation of state and anisotropic phase. In
order to simulate dissipation effects due to the transfer of photons and/or
neutrinos within the matter configuration, we introduce the flux factor, the
variable Eddington factor and a closure relation between them. As we expected
the strength of the shock increases the speed of the fluid to relativistic
values and for some critical ones is larger than light speed. In addition, we
find that energy conditions are very sensible to the anisotropy, specially the
strong one. As a special feature of the model, we find that the contribution of
the matter and radiation to the radial pressure are the same order of magnitude
as in the mant as in the core, moreover, in the core radiation pressure is
larger than matter pressure.Comment: To appear in Journal of Physics:Conference Series:"XXIX Spanish
Relativity Meeting (ERE 2006): Einstein's Legacy: From the Theoretical
Paradise to Astrophysical Observations
Crossover from Fermi liquid to Wigner molecule behavior in quantum dots
The crossover from weak to strong correlations in parabolic quantum dots at
zero magnetic field is studied by numerically exact path-integral Monte Carlo
simulations for up to eight electrons. By the use of a multilevel blocking
algorithm, the simulations are carried out free of the fermion sign problem. We
obtain a universal crossover only governed by the density parameter . For
, the data are consistent with a Wigner molecule description, while
for , Fermi liquid behavior is recovered. The crossover value is surprisingly small.Comment: 4 pages RevTeX, 3 figures, corrected Tabl
Slow-light optical bullets in arrays of nonlinear Bragg-grating waveguides
We demonstrate how to control independently both spatial and temporal
dynamics of slow light. We reveal that specially designed nonlinear waveguide
arrays with phase-shifted Bragg gratings demonstrate the frequency-independent
spatial diffraction near the edge of the photonic bandgap, where the group
velocity of light can be strongly reduced. We show in numerical simulations
that such structures allow a great flexibility in designing and controlling
dispersion characteristics, and open a way for efficient spatiotemporal
self-trapping and the formation of slow-light optical bullets.Comment: 4 pages, 4 figures; available from
http://link.aps.org/abstract/PRL/v97/e23390
Electric Field Effects on Graphene Materials
Understanding the effect of electric fields on the physical and chemical
properties of two-dimensional (2D) nanostructures is instrumental in the design
of novel electronic and optoelectronic devices. Several of those properties are
characterized in terms of the dielectric constant which play an important role
on capacitance, conductivity, screening, dielectric losses and refractive
index. Here we review our recent theoretical studies using density functional
calculations including van der Waals interactions on two types of layered
materials of similar two-dimensional molecular geometry but remarkably
different electronic structures, that is, graphene and molybdenum disulphide
(MoS). We focus on such two-dimensional crystals because of they
complementary physical and chemical properties, and the appealing interest to
incorporate them in the next generation of electronic and optoelectronic
devices. We predict that the effective dielectric constant () of
few-layer graphene and MoS is tunable by external electric fields (). We show that at low fields ( V/\AA)
assumes a nearly constant value 4 for both materials, but increases at
higher fields to values that depend on the layer thickness. The thicker the
structure the stronger is the modulation of with the electric
field. Increasing of the external field perpendicular to the layer surface
above a critical value can drive the systems to an unstable state where the
layers are weakly coupled and can be easily separated. The observed dependence
of on the external field is due to charge polarization driven by
the bias, which show several similar characteristics despite of the layer
considered.Comment: Invited book chapter on Exotic Properties of Carbon Nanomatter:
Advances in Physics and Chemistry, Springer Series on Carbon Materials.
Editors: Mihai V. Putz and Ottorino Ori (11 pages, 4 figures, 30 references
Interaction of the v-rel protein with an NF-kappa B DNA binding site
The avian reticuloendotheliosis virus T contains within its genome the oncogene rel. The expression of this gene is responsible for the induction of lymphoid tumors in birds. Recently, the rel gene was shown to be related to the p50 DNA binding subunit of the transcription factor complex NF-kappa B. Binding sites for the NF-kappa B complex are found in the enhancer regions of a number of genes, including the immunoglobulin kappa gene and the human immunodeficiency virus long terminal repeat. In this communication we identify an activity from avian reticuloendotheliosis virus T-transformed avian lymphoid cells that binds in an electrophoretic-mobility-shift assay to an NF-kappa B binding site from the kappa enhancer. This activity contains proteins immunologically related to rel, as detected by polyclonal and monoclonal antibodies directed against v-rel. In a DNA affinity precipitation assay using the NF-kappa B site from the human immunodeficiency virus long terminal repeat, v-rel and several other proteins were identified. These data suggest that oncogenic transformation by v-rel is the result of an altered pattern of gene expression
Quantum switches and quantum memories for matter-wave lattice solitons
We study the possibility of implementing a quantum switch and a quantum
memory for matter wave lattice solitons by making them interact with
"effective" potentials (barrier/well) corresponding to defects of the optical
lattice. In the case of interaction with an "effective" potential barrier, the
bright lattice soliton experiences an abrupt transition from complete
transmission to complete reflection (quantum switch) for a critical height of
the barrier. The trapping of the soliton in an "effective" potential well and
its release on demand, without loses, shows the feasibility of using the system
as a quantum memory. The inclusion of defects as a way of controlling the
interactions between two solitons is also reported
Anisotropic static solutions in modelling highly compact bodies
Einstein field equations for anisotropic spheres are solved and exact
interior solutions obtained. This paper extends earlier treatments to include
anisotropic models which accommodate a wider variety of physically viable
energy densities. Two classes of solutions are possible. The first class
contains the limiting case for the energy density which
arises in many astrophysical applications. In the second class the singularity
at the center of the star is not present in the energy density. The models
presented in this paper allow for increasing and decreasing profiles in the
behavior of the energy density.Comment: 9 pages, to appear in Pramana - J. Phy
- âŠ