36 research outputs found

    Techniques for efficiently implementing totally self-checking checkers in MOS technology

    Get PDF
    This paper presents some new techniques for reducing the transistor count oof MOS implementations of totally self-checking (TSC) checkers. The techniques are (1) transfer of fanouts, (2) removal of inverters and (3) use of multi-level realizations of functions. These techniques also increase the speed of the circuit and may reduce the number of required tests. Their effectiveness has been demonstrated by applying them to m-out-of-n and Berger code checkers. Impressive reductions of up to 90% in the transistor count in some cases have been obtained for the MOS implementation of these checkers. This directly translates into saving of chip area.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26970/1/0000537.pd

    Apoptosis and expression of cytokines triggered by pyropheophorbide-a methyl ester-mediated photodynamic therapy in nasopharyngeal carcinoma cells

    No full text
    The photodynamic properties of pyropheophorbide-a methyl ester (MPPa), a semi-synthetic photosensitizer derived from chlorophyll a, were evaluated in a human nasopharyngeal carcinoma HONE-1 cell line. MPPa was non-toxic to the HONE-1. At the concentrations of 0.5-2 μM, MPPa-mediated a drug dose-dependent photocytotoxicity in the HONE-1 cells. Confocal microscopy revealed a subcellular localization of MPPa in mitochondria and the Golgi apparatus. MPPa PDT-induced apoptosis was associated with the collapse of mitochondrial membrane potential, release of cytochrome c, the up-regulation of endoplasmic reticulum (ER) stress proteins (calnexin, Grp 94 and Grp78), and the activation of caspases-3 and -9. The photocytotoxicity was reduced by the corresponding specific caspase inhibitors. MPPa PDT-treated HONE-1 cells also up-regulated the gene expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and beta-chemokines (MIP-1β, MPIF-1, and MPIF-2). These results suggest that the MPPa may be developed as a chlorophyll-based photosensitizer for the treatment of nasopharyngeal carcinoma. © 2006 Elsevier B.V. All rights reserved
    corecore