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Abstract--This paper presents some new techniques for reducing the transistor count of MOS imple- 
mentations of totally self-checking (TSC) checkers. The techniques are (1) transfer of fanouts, (2) removal 
of inverters and (3) use of multi-level realizations of functions. These techniques also increase the speed 
of the circuit and may reduce the number of required tests. Their effectiveness has been demonstrated by 
applying them to m-out-of-n and Berger code checkers. Impressive reductions of up to 90% in the 
transistor count in some cases have been obtained for the MOS implementation of these checkers. This 
directly translates into saving of chip area. 

1. I N T R O D U C T I O N  

MOS technology has found extensive use in the area o f  very large scale integration (VLSI). In order  
to pack as many  circuits on a single chip as possible, it is essential to reduce the area requirement 
o f  each circuit. One way to do this is to implement them with as few transistors as possible. This 
has spurred interest in finding efficient techniques for reducing the transistor count  o f  MOS circuits. 
In this paper  we will be concerned with a special class o f  circuits, called totally self-checking (TSC) 
circuits. 

TSC circuits are used to detect errors concurrent ly  with normal  operation.  These circuits operate 
on encoded inputs to produce encoded outputs.  TSC checkers are used to moni tor  the outputs  to 
indicate error  when a non-code  word  is detected. The concept  o f  TSC circuits was first proposed 
in [4], and then generalised in [3], as follows: 

Definition I. A circuit is fault-secure for a set o f  faults F, if for every fault in F, the circuit never 
produces an incorrect code output  for code inputs. 

Definition 2. A circuit is self-testing for a set o f  faults F, if for every fault in F, the circuit produces 
a non-code  output  for at least one code input. 

Definition 3. A circuit is totally self-checking if it is fault-secure and self-testing. 
Definition 4. A circuit is code-disjoint if it maps  non-code inputs to non-code ouputs.  
Definition 5. A circuit is a totally self-checking checker if it is self-testing and code-disjoint. 

The correct operat ion o f  TSC circuits rests on following two assumptions:  

(1) Faults occur  one at a time. 
(2) Sufficient time elapses between any two faults so that  all the required code inputs can be 

applied to the circuit. 

With these assumptions,  the first erroneous output  due to a fault in the TSC circuit must  be a 
non-code  word. This is referred to as the TSC goal. 

Most  existing realizations o f  TSC circuits are at the logic gate level, and assume a stuck-at fault 
model.  It has been pointed out  in [5] that  an MOS implementat ion cannot  be TSC with respect 
to unidirectional stuck-at  faults (multiple lines stuck-at-1 or  stuck-at-0, but  not  both).  This is owing 
to a theorem in [16], which says that  a circuit is TSC with respect to unidirectional stuck-at faults 
only if its realization is inverter-free. This is not  possible in any MOS technology since every MOS 
gate is inverting. However ,  MOS implementat ions o f  TSC circuits can be made TSC with respect 
to single stuck-at  faults. So for the purpose o f  this paper  the fault-set will consist o f  all single 
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stuck-at faults. Another paper [8] shows how the MOS implementations can be made TSC with 
respect to realistic physical failures observed in the field, if certain layout rules are followed. 

A direct implementation of existing TSC designs in MOS technology requires a high transistor 
count and, therefore, a large silicon area. We will present some techniques in this paper to reduce 
the transistor count, with the added advantages of speed-up of the circuit and possible reduction 
in the number of tests required. Note that reducing transistor count reduces area even further 
because of fewer interconnections. In [5] the technological cost (in case of nMOS technology) of 
different coding and checking circuits has been evaluated. We will show that by using our 
techniques one can obtain marked improvements over the results given in [5]. Although our 
techniques can be used, wherever applicable, for any MOS circuit, we will show their usefulness 
by applying them to TSC m-out-of-n [3, 6, 7, 10, 12-14] and Berger code [1, 11] checkers. Both these 
codes detect unidirectional errors. It should be kept in mind that even single stuck-at faults can 
produce unidirectional errors. 

It is possible to realize a function which requires a multi-level logic gate realization by a single 
complex MOS gate. The achievable integration under a single complex MOS gate is limited by the 
following constraints. 

(1) AND fan-in: maximum number of control transistors in any series path between the output 
node and ground. 

(2) OR fan-in: the number of all possible conduction paths between the output node and ground. 
(3) Presence of inverting functions. 
(4) Presence of fanouts. 

For  simplicity, we will not consider the constraints due to the AND fan-in and OR fan-in in 
this paper. The techniques that we will present below can be shown to be easily extensible, if these 
constraints are considered. 

2. T E C H N I Q U E S  FOR R E D U C I N G  THE COST OF TSC C H E C K E R S  

2.1. Transfer of fanouts 
If  a function is shared by more than one MOS gate (i.e. when there is fanout), it becomes 

necessary to implement the function with a complex MOS gate. So fanouts do not allow us to take 
full advantage of the integration capability of MOS technology. In Example 1 below we will show 
how transfer of fanouts can help achieve greater integration. The techniques we develop in this 
paper are first applied to existing gate-level designs of TSC checkers,,thereby obtaining modified 
gate-level designs. These modified designs can then be implemented in MOS technology, resulting 
in a considerable decrease in their technological cost. Hence, most of the examples we present here 
will be of gate-level circuits, rather than their MOS implementations. We assume that an AND 
(OR) gate in a gate-level realization is implemented as a series (parallel) connection of transistors 
in a complex MOS gate. This complex MOS gate is followed by an inverter to get the non-inverting 
function. This will be clear from Example 1. 

Example I. The fanout in the circuit in Fig. l a has been transferred in the circuit in Fig. l b to 
the primary inputs. In this gate-level circuit the transfer of fanout increases the gate-count. But 
now let us look at the corresponding MOS implementations in Figs 2a and 2b. While the circuit 
in Fig. 2a requires 6 pull-up transistors and 9 control transistors for its MOS realization, the circuit 
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Fig. 1. (a) A gate-level circuit with fanout; (b) the circuit with fanout transferred to primary inputs. 
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Fig. 2. (a) MOS implementation of the circuit in Fig. la; (b) MOS implementation of the circuit in Fig. lb. 

in Fig. 2b requires only 4 pull-up transistors and 8 control transistors. Thus transfer of this fanout 
helps reduce the transistor count of  the circuit. 

The transfer of  fanouts can sometimes make the circuit redundant. Fortunately this is not true 
in general, and impressive reductions in transistor count can be achieved by judicious transfer of  
fanout. The transfer can also result in the loss of  the self-testing property of  a TSC circuit. So some 
conditions need to be developed to ensure that the self-testing property is maintained even after 
the transfer of  fanouts. We will develop these conditions for m-out-of-n checkers. The same concept 
can be employed for other circuits as well. But before we do SO, let us familiarize ourselves with 
some definitions and notation. 

An r-input network is said to have 2 r vertices of the r-cube as possible input combinations. A 
particular vertex of the r-cube is written as 

A = ( a l , a 2  . . . . .  at) where ai~{0,1}, fo ra l l  i. 

A vertex with exactly k ones is called a k-vertex. 
Definition 6. The partial ordering on the vertices is defined as 

For  example, 

A ~<B if ag~<b~ for all i. 

(1, 1,0, 0)~< (1, 1,0, l) 

(1, 0, 0, l )~ ' (1 ,  l, 0, 0). 

We will say that B covers A if A ~< B. 
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Definition 7. A universal test set is a set of  tests which detects single stuck-at faults in any 
irredundant A N D / O R  logic gate-level realization of a given function [2]. 

The procedure for finding the universal test set is given in [2]. We will describe it in brief here. 

Procedure 1 

(i)  Construct a truth table having one column for each literal that is present in the functional 
expression o f / .  

(2) Let Xj and Xz denote any two input vertices for which f is 1 and Yk and Ym denote any two 
input vertices for which f is 0. I f  

remove Xt and Ym from the table. 
(3) Repeat Step 2 until no more covering Xs or covered Ys remain. The set of  input vertices 

left in the table is the universal test set for that function. 
Theorem 1 below gives sufficient conditions for a set of  m-out-of-n code words to be a universal 

test set. It should be kept in mind that an m-out-of-n codeword is nothing but an m-vertex. 

THEOREM 1 

In a mapping of an m-out-of-n code onto a 1-out-of-2 code (realized by functions y~ and Y2) 
for a checker, if (1) each (m + l)-vertex covers some m-vertex mapping to (1,0) and some m-vertex 
mapping to (0, 1) and (2) each (m - 1)-vertex is covered by some m-vertex mapping to (1,0) and 
some m-vertex mapping to (0, 1), then the set of  m-out-of-n codewords is the universal test set for 
both y~ and 3'2- 

Proof From the monotone property of  the circuit constructed with only A N D / O R  gates, and 
the code-disjoint property of  the checker, all (m + 1) and higher vertices will map to (1, 1) and all 
(m - 1) and lower vertices will map to (0, 0). Since Condition (1) ensures that every (m + l)-vertex 
covers some m-vertex mapping to (l ,  0), from Procedure 1, we see that the (m + 1)-vertices cannot 
belong to the universal test set for the function y~; and since every (m + l)-vertex covers some 
m-vertex mapping to (0, 1), the same is true for the function Y2. Similarly, from Condition (2), since 
every (m - 1)-vertex is covered by some m-vertex mapping to (1,0), the (m - 1)-vertices cannot 
belong to the universal test set for the function Y2; and since every (m - l)-vertex is also covered 
by some m-vertex mapping to (0, 1) the same is true for the function y~. 

We have proved above that, given Conditions (1) and (2), any (m + 1)-vertex or (m - 1)-vertex 
cannot belong to the universal test set of  either function y~ or Y2. Now we will consider the (m - 2) 
and lower vertices. All such vertices map to (0, 0). Due to the transitivity of  the covering relation, 
for every (m - 2) or lower vertex Xi there exists an (m - l)-vertex ~ such that X,~ ~< ~ .  But from 
Condition (2), we have, ~ ~< Xk and Xj ~ Xt, where Xk is some m-vertex mapping to (1,0) and XI 
is some m-vertex mapping to (0, 1). This implies that Xi ~< X k and X, ~ Xt. So, from Procedure 1, 
any (m - 2) or lower vertex also cannot belong to the universal test set of  either y~ or Y2. A similar 
argument can be used to show that any (m + 2) or higher vertex cannot belong to the universal 
test set of  either y~ or Y2. 

Since every m-vertex has the property that it does not cover any other m-vertex, only these 
m-vertices remain after executing Procedure 1 to find the universal test set for both Yt and Y2. 
Q.E.D. 

An alternative proof  of  Theorem 1 can be obtained by observing that the m-vertices are either 
minimal true-vertices or maximal false-vertices for y~ and y:,  and hence, constitute the complete 
test set [15]. 

Theorem 1 is applicable to Smith's m-out-of-2m checkers [16] since they are based precisely on 
the two conditions given in this theorem. 

We will now focus our attention on Reddy's  m-out-of-2m checkers [14]. Reddy gave multi-level 
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Table I. Classes of  (m + I)-vertices and m-vertices 
they cover 

Table 2. Classes of  (m - 1)-vertices and the m-  
vertices that cover them 

Possible classes Covered m-vertices Possible classes Covering m-vertices 
of  (m + 1)-vertices belong to of  (m - l)-vertices belong to 

(m, 1) (m, 0), (m - I, I) (m -- 1,0) (m, 0), (m -- I, 1) 
(m -- 1,2) (m -- I, I), (m - - 2 , 2 )  (m - 2 ,  1) (m - I, I), (m - - 2 , 2 )  
( m - - 2 , 3 )  ( m - - 2 , 2 ) ,  ( m - - 3 , 3 )  ( m - - 3 , 2 )  ( m - 2 , 2 ) ,  ( m - 3 , 3 )  

(2, m -- I) (2, m - 2 ) ,  (1 ,m -- 1) ( l , m  - 2 )  (2, m --2) ,  ( l , m  - 1) 
( 1 ,m)  ( I , m  - 1), (0, m)  (0, m - 1) ( I , m  I). (0, m)  

cellular realizations for the checker functions y~ and Y2 for an m-out-of-2m checker as follows: 

y~= ~ T(m,>~i) .T(m~>lm-i) ,  iodd 
i = 0  

Y2 = ~ T(ma >1 i)" T(mb >1 m -- i), i even. 
i = 0  

Here the input bits are divided into two groups A and B, each consisting of m bits. The number 
of  ones occurring in the two groups is referred to as m~ and mb respectively. For code inputs 
m a q -  m b = m .  

We will say that a k-vertex belongs to a class represented by a 2-tuple (k,, kb) if it has k,, ones 
in group A and kb ones in group B. Obviously, k~ + kb = k. 

Tm~OREM 2 
The set of  m-out-of-2m codewords is a universal test set for y~ and Y2 functions of  Reddy's 

checkers. 
Proof If we prove that Conditions (1) and (2) of Theorem 1 are satisfied by Reddy's checkers, 

then this theorem will follow. 
We will first consider the (m + l)-vertices. In the first column of  Table 1 we give all the different 

classes of  2-tuples to whch any (m + 1)-vertex can possibly belong. The entries in the second 
column give the classes to which the m-vertices covered by that class of  (m + 1)-vertices belong. 

It can easily be verified that the m-vertices belong to the two different 2-tuples appearing in the 
second column of Table 1, for any given class of  (m + 1)-vertices, map to the two different outputs 
(0, 1) and (1, 0). Hence, Condition (1) of  Theorem 1 is satisfied. 

Similarly, Table 2 can be formed for (m - l)-vertices. 
Following the same arguments as above, Condition (2) of Theorem 1 is seen to be satisfied. 

Hence, Theorem 2 follows from Theorem 1. Q.E.D. 
The important implication of  Theorem 2 is that any fanout in Reddy's m-out-of-2m checkers 

can be transferred to some intermediate levels in the circuit. This does not make the circuit 
redundant, and allows us a lot of  flexibility in the MOS implementation of  these checkers. Since 
the set of  m-out-of-2m codewords forms a universal test set, we are assured that the circuit will 
remain self-testing even after the fanout transfer. It can be easily seen that the code-disjoint 
property is not affected by fanout transfer because the functions being implemented are still the 
same. 

Example 2. If we transfer all the fanouts in Reddy's 5-out-of-10 checker to the primary inputs, 
its nMOS implementation requires 4 pull-up transistors and 116 control transistors. But another 
nMOS implementation, which leaves four of  the fanouts untransferred, requires only 12 pull-up 
transistors and 80 control transistors. If we had implemented this checker without modification, 
it would require 40 pull-up transistors and 88 control transistors. So the savings in the transistor 
count is evident, as is the flexibility that this technique allows. 

Another advantage of  this technique is that it reduces the MOS gate levels (the number of 
complex or primitive MOS gates connected in series) from primary inputs to circuit outputs, and, 
hence, increases the speed of the circuit. On the other hand the disadvantage is that more tests are 
required to make the circuit self-testing. For example, for Reddy's checkers the number of  required 
tests goes up from 2m to 2% if all fanouts are transferred to primary inputs. If all the fanouts are 
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not transferred then the number of tests lies between these two limits. The 2" tests, in case of full 
fanout, transfer, are the same as those required for Anderson's m-out-of-2m checkers[3]. 
Anderson's m-out-of-2m checkers do not have fanouts, hence this technique is not applicable to 
them. 

Although this technique increases the number of required tests, when it is combined with the 
other two techniques given ahead, in most cases there is a considerable reduction in the number 
of tests. Now we go on to our second technique. 

2.2. Removal of inverters 

A function, which is shared by more than one MOS gate, is realised by a complex MOS gate 
followed by an inverter. We will show that these inverters can be eliminated in most cases, thereby 
reducing the transitor count and increasing the speed of the MOS implementation of the checker. 
In [5] it is mentioned that such inverters can be eliminated if the function realized at a fanout node 
can be replaced by its dual function without modifying the function realized by the circuit. We will 
not restrict ourselves to such functions. 

Let G(f )  be an AND/OR realization of a function f and let Gdm(f) be the corresponding 
realization of f after using De Morgan's theorem. For example, if G ( f )  realizes f = x~x2 + x3x4, 
then G0m(f ) realizes f =  (.21 + -~2) (23 + -~4). 

THEOREM 3 
For any function f, G( f )  and G~m(f) have the same single stuck-at fault test set. 
Proof. Let the realization obtained by placing two inverters on every line of G( f )  be Gi(f). The 

stuck-at fault test set for Gi(f) is the same as that for G(f) ,  because the path sensitization of the 
stuck-at faults by their corresponding tests remains unaffected. Furthermore, we can see that the 
corresponding lines in the two gates in Figs 3a and 3b require the same test set for detecting the 
presence of stuck-at faults. 

The two gates in Figs 3a and 3b can therefore be interchangeably used in the circuit Gi(f) 
without changing its test set. It can easily be seen that Gdm(f) can be obtained from Gi(f) by 
these interchanges of the two gates. But since Gi(f) has the same test set as G(f) ,  Gdm(f) and 
G( f )  will also have the same test set. Q.E.D. 

This theorem implies that by converting G ( f )  to Gam(f ) we do not affect the self-testing property 
of the circuit. 

Example 3. Consider Marouf-Fr iedman's  design of a 2-out-of-5 checker [10] given in Fig. 4. This 
circuit can be converted to the circuit in Fig. 5 without affecting its TSC property with respect to 
single stuck-at faults, with the resultant saving of ten inverters in the MOS implementation. It is 
clear that the two inverters at the circuit outputs can also be done away with since the pair (y~, Yz) 
would also form a I-out-of-2 code, if the pair (y~, Y2) forms a 1-out-of-2 code. 

This technique also has the added advantage that it speeds up the MOS implementation by 
reducing the MOS gate levels from circuit inputs to outputs. In Example 3, the number of MOS 
gate levels in the MOS implementation of the circuit in Fig. 4 is six, while for the MOS 
implementation of the circuit in Fig. 5 it is three. Hence, the speed is roughly doubled by using 
this technique for this example. This technique is applicable to designs in [6, 7, 10, 13, 16]. 

Now we continue on to our third technique. 

2.3. Increasing the logic gate levels of a circuit before its MOS implementation 

It is possible to reduce the transistor count of an MOS implementation by modifying the 
expression of the function it implements. This has been discussed in [8]. It was shown in that paper 
that it is desirable to first reduce the number of literals in the expression of a function before 
implementing it in an MOS technology. This basically corresponds to increasing the number of 

X 2 X2 X2 X2 

Xn X n X,~ X n 

(a) (b) 
Fig. 3. (a) A NAND gate and its equivalent; (b) A NOR gate and its equivalent. 
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Fig. 4. Marou~Friedman's 2-out-of-5 checker. 

logic gate levels in the gate-level design of that function. In case of gate-level designs this would 
have amounted to reducing the speed of the circuit. But, as was explained in [8], the speed of the 
MOS implementation is not degraded by using this technique (if at all, the circuit becomes slightly 
faster). This is because the number of MOS gate levels from circuit inputs to outputs remains 
unchanged. Also, the diffusion area required on the chip for implementing the control transistors 
is reduced because fewer control transistors are required if this technique is used. Since the speed 
of the complex MOS gate primarily depends on the capacitive load generated at the output node 
by the diffusion conduction paths, we actually have a speed enhancement for the MOS 
implementations. Another advantage is that the number of tests required to test the circuit is 
considerably reduced. 

We will show the usefulness of this technique by applying it to MOS implementations of majority 
functions. Majority functions (defined below) are extensively used in the design of m-out-of-n code 
checkers. 

Maximum level realizations of majority functions. We will first define a majority function. Let 
A be the set of input bits, and let n, and ka represent the number of bits and the number of ones 
in the set respectively. The majority function T(ka >t i), defined on set A, has a value 1 iff the 
condition inside the parentheses is true. For example, if A = (al, a2, a3, a4), then a functional 
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Fig. 5. Marouf-Friedman's 2-out-of-5 checker after using our technique. 



562 N.K. JHA and J. A. ABRAHAM 

expression of the majority function T(k, >1 2) can be given as 

T(k a >/2) = ala2 + ala3 + ata4 + a2a3 + a2a4 + a3a 4. (1) 
This is a two level realization of T(k, >1 2). Usually the m-out-of-n code checker designs employ 

majority function realizations with minimum number of levels due to speed considerations. But 
as was mentioned above, this thinking is no longer valid for MOS circuits, and one should use 
minimum literal or maximum level realizations to reduce the transistor count. An efficient method 
of obtaining maximum level majority function realization is given in [9, 13]. Using this method an 
alternate functional expression can be obtained for T(k, >~ 2) as follows: 

T(k, >1 2) = a,a2 + (aL + a2) (a3 + a4) + a~a4. (2) 

This equation gives the maximum level, minimum literal realization of T(k,,>~ 2). Since the 
number of control transistors in the MOS implementation has one-to-one correspondence with the 
number of literals in the functional expression, we see that the transistor count, from (I) to (2), 
has been reduced by four. 

One question still remains, however; that is, will the stuck-at fault test set of a two-level 
realization of any function (not just the majority function) still be valid for its multi-level 
realization. We given a theorem below to show that this indeed is the case. 

T H E O R E M  4 

The stuck-at fault test set S of a two-level realization suffices as a test set for any multi-level 
realization of that function. 

Proof. We will prove the theorem for the A N D - O R  realization. Dual arguments can be applied 
to the O R - A N D  realization. 

Let E , ( f )  and E2(f )  denote the functional expressions of the two-level A N D - O R  realization 
and the multi-level realization of  a function f respectively. E, ( f )  is basically an irredundant sum 
of products expression of the function f.  

If we expand E2(f) by removing the parentheses, we arrive at El(./'). Conversely, we can factor 
out common literals or sub-expressions from the terms of El( f )  and the other intermediate 
expressions to arrive at E2(f) .  The process of conversion repeatedly applied, going from E~(f) to 
E2(f) ,  is illustrated by Figs 6a and 6b. 

xi, i e { l ,  2, 3}, in the circuits in Figs 6a and 6b can be a literal or a sub-expression. It can easily 
be seen that the stuck-at fault test set for the circuit in Fig. 6a suffices as a stuck-at fault test set 
for the circuit in Fig. 6b. Since E2(f) is obtained by repeatedly applying the above conversion at 
different levels, the theorem follows as a straightforward generalization. Q.E.D. 

The test set S is sufficient, but not necessary, for making the multi-level realization self-testing. 
Usually a subset of S is required for this purpose. Hence, this technique reduces the number of 
tests as well as the transistor count when the circuit is implemented in MOS technology. 
Additionally, it also slightly increases the speed of the circuit, as explained before. We can apply 
this technique to designs in [3, 6, 7, 9, 10, 13, 16]. 

3. E F F I C I E N T  MOS I M P L E M E N T A T I O N  OF 
BERGER CODE C H E C K E R S  

The Berger code is a separable code used to detect unidirectional errors. Designs of gate level 
Berger checkers are given in [1, 11]. These designs basically employ a combinational circuit which 
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Fig. 6. (a) Two-level realization of a function f;  (b) multi-level realization of.,( 
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Fig. 7. An efficient realization of a two-bit adder. 

generates the complement of  the checkbits. This circuit is realized with full adders and half-adders. 
The outputs of  this combinational  circuit, together with the checkbit lines from the primary inputs, 
are fed to a two-rail code checker. The two outputs of  the two-rail code checker indicate error when 
a fault occurs. 

In [5] an efficient way of  implementing full adders and half-adders in MOS technology is given. 
The transistor count nx (for nMOS technology) for the Berger code checker, on the basis of  these 
implementations, is given as 

nv = 2 3 ( n j -  nk )+  10(nk-  1 )=  23n I - 13nk-  10 (3) 

where n~ = number of information bits and nk = number  of  checkbits. 
The number 23(n I - nk) refers to the transistor count of  the checkbit complement generator and 

10(nk - 1) to the transistor count of  the two-rail code checker. 
We will now present a more efficient way of implementing Berger code checkers. Figure 7 shows 

a gate level realization of  the two-bit adder (with outputs complemented), whose MOS imple- 
mentation requires only 14 transistors (12 control and 2 load transistors). Figure 8 shows a gate 
level realization of  a two-bit adder for obtaining uncomplemented outputs when complemented 
inputs are available. This also requires 14 transistors for its MOS implementation. These are more 
efficient MOS implementations than  the one given in [5], which requires 23 transistors for a two-bit 
adder with uncomplemented inputs and outputs. 

x 3 

X 3 

Fig. 8. An alternative realization of a two-bit adder. 

$I 
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Fig.  9. A n  efficient checkb i t  c o m p l e m e n t  g e n e r a t o r  for  n~ = 7. 

s4 

Let us consider a Berger code with/21 = 7. We know that for this code, n, = 3. Figure 9 shows 
the combinational circuit for generating the complement of  the three checkbits when the technique 
for removal of  inverters is used, and efficient realizations given in Fig. 7 and 8 are used for the 
two-bit adders. This circuit is combined with a two-rail code checker to obtain a Berger code 
checker when n I = 7. We get the following equation for the transistor count of  the Berger code 
checker for the general case: 

r / T  = 14(nl -- nk) + 10(nk -- 1) + m = 14n I -- 4nk -- 10 + m (4) 

where m is a constant required to account for some inverters that remain in the circuit. For  the 
circuit in Fig. 9, m = 4, because two inverters are still present in it. 

For  the Berger code checker considered above, for nl = 7 and nk = 3, we get n-r = 112 from (3). 
I f  our techniques are used, however, we get nx = 80, from (4). Hence, we have reduced the transistor 
count by about  29%. This is roughly the reduction to be expected for most Berger code checkers. 

Of  course, the added advantage of speed-up of the circuit due to the removal of  the inverters 
is also obtained by using our technique. 

4. MOS C H E C K E R  COST FOR r n - O U T - O F - n  CODES 

In Section 2 we presented three techniques which are individually or collectively applicable to 
all the known designs of  m-out-of-n code checkers. We present some tables to show the reduction 
in the transistor count of  the nMOS realizations of  some of these checkers. L 1 and C1 refer to 
the number  of  load and control transistors respectively if the m-out-of-n code checker designs are 
implemented directly in nMOS technology. L2 and C2 refer to the number of  load and control 
transistors respectively if the techniques in Section 2 are used. 

(L1 + C 1  - L 2 -  C2) 
% reduction in transistor count = x 100 

(L I + C l )  

For  simplicity the A N D  fan-in and the OR fan-in restrictions have not been taken into account. 
Looking at Tables 3-8, we can conclude that for m-out-of-2m codes for small m, Anderson's  

design [3] is the best f rom the point of  view of minimum chip area requirement; while for 

Table 3. Transistor counts for Smith's m-out-of-2m code checkers 

% 

Code LI CI L2 C2 Reduction 

3/6 16 32 2 24 46 
4/8 36 66 10 48 43 
5/10 64 112 12 80 48 

10/20 324 522 82 360 48 
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Table 4. Transistor counts for Reddy's m-out-of-2m code checkers 

% 
Code L 1 C 1 L 2 C2 Reduction 

3/6 12 28 2 22 40 
4/8 24 54 2 52 31 
5/10 40 88 I 0 90 22 

10/20 180 378 74 364 22 

Table 5. Transistor counts for Anderson's m-out-of-2m code checkers 

% 
Code L 1 C 1 L2 C2 Reduction 

3/6 4 26 2 22 2O 
4/8 4 66 2 48 29 
5/I 0 4 162 2 98 40 

10/20 4 10242 2 1176 89 

Table 6. Transistor counts for Marouf~Friedman's m-out-of-n code 
checkers 

% 
Code L 1 C I L2 C2 Reduction 

2/5 20 38 10 28 34 
3/7 20 63 10 48 30 
3/8 24 84 12 64 29 
3/10 24 116 12 86 30 
4/9 20 126 10 84 31 
5/11 20 240 10 137 43 

10/21 20 16346 10 1464 91 

Table 7. Transistor counts for Piestrak's m-out-o~n code checkers 

% 
Code L 1 C I L2 C2 Reduction 

3/7 26 52 15 40 30 
3/8 30 62 16 46 33 
3/10 42 84 26 66 27 
4/9 38 83 25 67 24 
5/11 52 116 35 94 23 

10/21 132 383 95 326 18 

Table 8. Transistor counts for Gaitanis Halatsis ' m-out-ogn code 
checkers 

% 
Code L1 C1 L2 C2 Reduction 

2/5 24 42 15 33 27 
3/7 32 67 17 48 34 
3/8 32 75 18 56 31 
3/10 36 102 20 76 30 
4/9 38 98 19 73 32 
5/11 42 151 21 107 34 

10/21 62 1020 31 625 40 

m-out-of-2m codes for large m, one could choose either Smith's [16] or Reddy's [14] design. It is 
difficult to say which design is better until the actual layout is done for each individual case. 

For smaller m-out-of-n (n :~ 2m) codes there is not much of a difference among the three designs 
considered in Tables 6-8. For larger m-out-of-n codes Piestrak's [13] design seems to be the best 
from the chip area considerations. We have not given tables for the other two known designs for 
m-out-of-n codes, namely Nanya-Tohma's design [12] and Efstathiou-Halatsis' design [6], because 
these designs require much higher transistor counts compared to the three designs for which tables 
were presented here. Hence, they are not of practical interest from the point of view of  MOS 
implementation. 

5. C O N C L U S I O N  

In this paper we presented some techniques to reduce the transistor count of  MOS imple- 
mentations of  TSC checkers. The reduction ranges from about 20 to over 90%. The resultant 
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decrease  in s i l icon a r e a  will  be  even  m o r e  due  to r educed  rou t ing .  O t h e r  a d v a n t a g e s  o f  us ing these  

t e c h n i q u e s  are  the  s p e e d - u p  o f  the  c i rcu i t  due  to a r e d u c t i o n  in the  M O S  ga te  levels  and  a poss ib le  

r e d u c t i o n  in the  n u m b e r  o f  tests r e q u i r e d  to m a k e  the  c i rcu i t  self- test ing.  I t  shou ld  be n o t e d  tha t  

the  a p p l i c a t i o n  o f  these  t e c h n i q u e s  is no t  l imi ted  to T S C  checkers ,  bu t  they  can  be app l i ed  to any 

gene ra l  c i rcu i t  w h o s e  M O S  i m p l e m e n t a t i o n  is r equ i red .  In this p a p e r  they  were  app l i ed  to T S C  

checke r s  to es tab l i sh  the i r  effect iveness .  
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